An anomaly detection approach for multiple monitoring data series based on latent correlation probabilistic model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-09-24

AUTHORS

Jianwei Ding, Yingbo Liu, Li Zhang, Jianmin Wang, Yonghong Liu

ABSTRACT

Condition monitoring systems are widely used to monitor the working condition of equipment, generating a vast amount and variety of monitoring data in the process. The main task of surveillance focuses on detecting anomalies in these routinely collected monitoring data, intended to help detect possible faults in the equipment. However, with the rapid increase in the volume of monitoring data, it is a nontrivial task to scan all the monitoring data to detect anomalies. In this paper, we propose an approach called latent correlation-based anomaly detection (LCAD) that efficiently and effectively detects potential anomalies from a large number of correlative isomerous monitoring data series. Instead of focusing on one or more isomorphic monitoring data series, LCAD identifies anomalies by modeling the latent correlation among multiple correlative isomerous monitoring data series, using a probabilistic distribution model called the latent correlation probabilistic model, which helps to detect anomalies according to their relations with the model. Experimental results on real-world data sets show that when dealing with a large number of correlative isomerous monitoring data series, LCAD yields better performances than existing anomaly detection approaches. More... »

PAGES

340-361

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10489-015-0713-7

DOI

http://dx.doi.org/10.1007/s10489-015-0713-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024372946


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "East Main Building, School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Computer Science and Technology, Tsinghua University, Beijing, China", 
            "Institute of Information System & Engineering, School of Software, Tsinghua University, Beijing, China", 
            "East Main Building, School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ding", 
        "givenName": "Jianwei", 
        "id": "sg:person.016006656651.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016006656651.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East Main Building, School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Institute of Information System & Engineering, School of Software, Tsinghua University, Beijing, China", 
            "East Main Building, School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yingbo", 
        "id": "sg:person.010101166051.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010101166051.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East Main Building, School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Institute of Information System & Engineering, School of Software, Tsinghua University, Beijing, China", 
            "East Main Building, School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Li", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "East Main Building, School of Software, Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Institute of Information System & Engineering, School of Software, Tsinghua University, Beijing, China", 
            "East Main Building, School of Software, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Research Institute of SANY Group, Changsha, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "General Research Institute of SANY Group, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yonghong", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00521-012-1263-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035234673", 
          "https://doi.org/10.1007/s00521-012-1263-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:dami.0000023676.72185.7c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008790848", 
          "https://doi.org/10.1023/b:dami.0000023676.72185.7c"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10618-005-0014-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030206368", 
          "https://doi.org/10.1007/s10618-005-0014-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10618-008-0093-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020736875", 
          "https://doi.org/10.1007/s10618-008-0093-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-005-0197-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012681148", 
          "https://doi.org/10.1007/s10115-005-0197-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-006-0020-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006754616", 
          "https://doi.org/10.1007/s10115-006-0020-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10618-012-0250-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030284331", 
          "https://doi.org/10.1007/s10618-012-0250-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-00672-2_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050542101", 
          "https://doi.org/10.1007/978-3-642-00672-2_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024988512476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028077491", 
          "https://doi.org/10.1023/a:1024988512476"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09-24", 
    "datePublishedReg": "2015-09-24", 
    "description": "Condition monitoring systems are widely used to monitor the working condition of equipment, generating a vast amount and variety of monitoring data in the process. The main task of surveillance focuses on detecting anomalies in these routinely collected monitoring data, intended to help detect possible faults in the equipment. However, with the rapid increase in the volume of monitoring data, it is a nontrivial task to scan all the monitoring data to detect anomalies. In this paper, we propose an approach called latent correlation-based anomaly detection (LCAD) that efficiently and effectively detects potential anomalies from a large number of correlative isomerous monitoring data series. Instead of focusing on one or more isomorphic monitoring data series, LCAD identifies anomalies by modeling the latent correlation among multiple correlative isomerous monitoring data series, using a probabilistic distribution model called the latent correlation probabilistic model, which helps to detect anomalies according to their relations with the model. Experimental results on real-world data sets show that when dealing with a large number of correlative isomerous monitoring data series, LCAD yields better performances than existing anomaly detection approaches.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10489-015-0713-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136076", 
        "issn": [
          "0924-669X", 
          "1573-7497"
        ], 
        "name": "Applied Intelligence", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "anomaly detection approach", 
      "detection approach", 
      "real-world data sets", 
      "probabilistic model", 
      "probabilistic distribution model", 
      "condition monitoring system", 
      "anomaly detection", 
      "nontrivial task", 
      "vast amount", 
      "latent correlations", 
      "possible faults", 
      "collected monitoring data", 
      "condition of equipment", 
      "potential anomalies", 
      "monitoring system", 
      "better performance", 
      "large number", 
      "main task", 
      "data sets", 
      "experimental results", 
      "monitoring data", 
      "task", 
      "data series", 
      "distribution model", 
      "model", 
      "set", 
      "data", 
      "equipment", 
      "faults", 
      "performance", 
      "system", 
      "detection", 
      "number", 
      "surveillance", 
      "rapid increase", 
      "process", 
      "variety", 
      "results", 
      "amount", 
      "anomalies", 
      "series", 
      "scans", 
      "volume", 
      "relation", 
      "correlation", 
      "conditions", 
      "increase", 
      "approach", 
      "paper", 
      "LCAD", 
      "correlation-based anomaly detection", 
      "correlative isomerous monitoring data series", 
      "isomerous monitoring data series", 
      "monitoring data series", 
      "more isomorphic monitoring data series", 
      "isomorphic monitoring data series", 
      "multiple correlative isomerous monitoring data series", 
      "latent correlation probabilistic model", 
      "correlation probabilistic model", 
      "multiple monitoring data series"
    ], 
    "name": "An anomaly detection approach for multiple monitoring data series based on latent correlation probabilistic model", 
    "pagination": "340-361", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024372946"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10489-015-0713-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10489-015-0713-7", 
      "https://app.dimensions.ai/details/publication/pub.1024372946"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_682.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10489-015-0713-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10489-015-0713-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10489-015-0713-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10489-015-0713-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10489-015-0713-7'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      22 PREDICATES      94 URIs      77 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10489-015-0713-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7c1233794fe64e2aab8a764f56caf23f
4 schema:citation sg:pub.10.1007/978-3-642-00672-2_26
5 sg:pub.10.1007/s00521-012-1263-0
6 sg:pub.10.1007/s10115-005-0197-6
7 sg:pub.10.1007/s10115-006-0020-z
8 sg:pub.10.1007/s10618-005-0014-6
9 sg:pub.10.1007/s10618-008-0093-2
10 sg:pub.10.1007/s10618-012-0250-5
11 sg:pub.10.1023/a:1024988512476
12 sg:pub.10.1023/b:dami.0000023676.72185.7c
13 schema:datePublished 2015-09-24
14 schema:datePublishedReg 2015-09-24
15 schema:description Condition monitoring systems are widely used to monitor the working condition of equipment, generating a vast amount and variety of monitoring data in the process. The main task of surveillance focuses on detecting anomalies in these routinely collected monitoring data, intended to help detect possible faults in the equipment. However, with the rapid increase in the volume of monitoring data, it is a nontrivial task to scan all the monitoring data to detect anomalies. In this paper, we propose an approach called latent correlation-based anomaly detection (LCAD) that efficiently and effectively detects potential anomalies from a large number of correlative isomerous monitoring data series. Instead of focusing on one or more isomorphic monitoring data series, LCAD identifies anomalies by modeling the latent correlation among multiple correlative isomerous monitoring data series, using a probabilistic distribution model called the latent correlation probabilistic model, which helps to detect anomalies according to their relations with the model. Experimental results on real-world data sets show that when dealing with a large number of correlative isomerous monitoring data series, LCAD yields better performances than existing anomaly detection approaches.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N9147c76a8185423dad7855102e789827
20 Nfe9ec895372846fb873fcdaa4ac75eab
21 sg:journal.1136076
22 schema:keywords LCAD
23 amount
24 anomalies
25 anomaly detection
26 anomaly detection approach
27 approach
28 better performance
29 collected monitoring data
30 condition monitoring system
31 condition of equipment
32 conditions
33 correlation
34 correlation probabilistic model
35 correlation-based anomaly detection
36 correlative isomerous monitoring data series
37 data
38 data series
39 data sets
40 detection
41 detection approach
42 distribution model
43 equipment
44 experimental results
45 faults
46 increase
47 isomerous monitoring data series
48 isomorphic monitoring data series
49 large number
50 latent correlation probabilistic model
51 latent correlations
52 main task
53 model
54 monitoring data
55 monitoring data series
56 monitoring system
57 more isomorphic monitoring data series
58 multiple correlative isomerous monitoring data series
59 multiple monitoring data series
60 nontrivial task
61 number
62 paper
63 performance
64 possible faults
65 potential anomalies
66 probabilistic distribution model
67 probabilistic model
68 process
69 rapid increase
70 real-world data sets
71 relation
72 results
73 scans
74 series
75 set
76 surveillance
77 system
78 task
79 variety
80 vast amount
81 volume
82 schema:name An anomaly detection approach for multiple monitoring data series based on latent correlation probabilistic model
83 schema:pagination 340-361
84 schema:productId N2869c6b6e8d248808aa0ae8860d60c4c
85 N35a0757e7e844d12a0ec80b098c440d5
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024372946
87 https://doi.org/10.1007/s10489-015-0713-7
88 schema:sdDatePublished 2022-01-01T18:39
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N4b45237d56924c4f82d7401d4c746171
91 schema:url https://doi.org/10.1007/s10489-015-0713-7
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N11311435b46345a393f9e556bcde40d6 schema:affiliation grid-institutes:grid.12527.33
96 schema:familyName Zhang
97 schema:givenName Li
98 rdf:type schema:Person
99 N1e36d489a3df4ecfb6f7f0057c941bfb rdf:first N2d87793372304bf0baa9ac1ff8b7238d
100 rdf:rest rdf:nil
101 N2869c6b6e8d248808aa0ae8860d60c4c schema:name doi
102 schema:value 10.1007/s10489-015-0713-7
103 rdf:type schema:PropertyValue
104 N2d87793372304bf0baa9ac1ff8b7238d schema:affiliation grid-institutes:None
105 schema:familyName Liu
106 schema:givenName Yonghong
107 rdf:type schema:Person
108 N35a0757e7e844d12a0ec80b098c440d5 schema:name dimensions_id
109 schema:value pub.1024372946
110 rdf:type schema:PropertyValue
111 N4b45237d56924c4f82d7401d4c746171 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N7c1233794fe64e2aab8a764f56caf23f rdf:first sg:person.016006656651.23
114 rdf:rest N7eee7597b428408f83437c92ced3cec6
115 N7eee7597b428408f83437c92ced3cec6 rdf:first sg:person.010101166051.66
116 rdf:rest N84dc9bfde20c4eceac2c8c0e6aa397e9
117 N84dc9bfde20c4eceac2c8c0e6aa397e9 rdf:first N11311435b46345a393f9e556bcde40d6
118 rdf:rest N88bf17aa9e6c44519dec2dbf44da056e
119 N88bf17aa9e6c44519dec2dbf44da056e rdf:first sg:person.012303351315.43
120 rdf:rest N1e36d489a3df4ecfb6f7f0057c941bfb
121 N9147c76a8185423dad7855102e789827 schema:issueNumber 2
122 rdf:type schema:PublicationIssue
123 Nfe9ec895372846fb873fcdaa4ac75eab schema:volumeNumber 44
124 rdf:type schema:PublicationVolume
125 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
126 schema:name Information and Computing Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
129 schema:name Artificial Intelligence and Image Processing
130 rdf:type schema:DefinedTerm
131 sg:journal.1136076 schema:issn 0924-669X
132 1573-7497
133 schema:name Applied Intelligence
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.010101166051.66 schema:affiliation grid-institutes:grid.12527.33
137 schema:familyName Liu
138 schema:givenName Yingbo
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010101166051.66
140 rdf:type schema:Person
141 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.12527.33
142 schema:familyName Wang
143 schema:givenName Jianmin
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
145 rdf:type schema:Person
146 sg:person.016006656651.23 schema:affiliation grid-institutes:grid.12527.33
147 schema:familyName Ding
148 schema:givenName Jianwei
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016006656651.23
150 rdf:type schema:Person
151 sg:pub.10.1007/978-3-642-00672-2_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050542101
152 https://doi.org/10.1007/978-3-642-00672-2_26
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s00521-012-1263-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035234673
155 https://doi.org/10.1007/s00521-012-1263-0
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s10115-005-0197-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012681148
158 https://doi.org/10.1007/s10115-005-0197-6
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10115-006-0020-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006754616
161 https://doi.org/10.1007/s10115-006-0020-z
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s10618-005-0014-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030206368
164 https://doi.org/10.1007/s10618-005-0014-6
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s10618-008-0093-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020736875
167 https://doi.org/10.1007/s10618-008-0093-2
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s10618-012-0250-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030284331
170 https://doi.org/10.1007/s10618-012-0250-5
171 rdf:type schema:CreativeWork
172 sg:pub.10.1023/a:1024988512476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028077491
173 https://doi.org/10.1023/a:1024988512476
174 rdf:type schema:CreativeWork
175 sg:pub.10.1023/b:dami.0000023676.72185.7c schema:sameAs https://app.dimensions.ai/details/publication/pub.1008790848
176 https://doi.org/10.1023/b:dami.0000023676.72185.7c
177 rdf:type schema:CreativeWork
178 grid-institutes:None schema:alternateName General Research Institute of SANY Group, Changsha, China
179 schema:name General Research Institute of SANY Group, Changsha, China
180 rdf:type schema:Organization
181 grid-institutes:grid.12527.33 schema:alternateName East Main Building, School of Software, Tsinghua University, 100084, Beijing, China
182 schema:name Department of Computer Science and Technology, Tsinghua University, Beijing, China
183 East Main Building, School of Software, Tsinghua University, 100084, Beijing, China
184 Institute of Information System & Engineering, School of Software, Tsinghua University, Beijing, China
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...