An optimization methodology for machine learning strategies and regression problems in ballistic impact scenarios View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-03

AUTHORS

Israel Gonzalez-Carrasco, Angel Garcia-Crespo, Belen Ruiz-Mezcua, Jose Luis Lopez-Cuadrado

ABSTRACT

In domains with limited data, such as ballistic impact, prior researches have proven that the optimization of artificial neural models is an efficient tool for improving the performance of a classifier based on MultiLayer Perceptron. In addition, this research aims to explore, in the ballistic domain, the optimization of other machine learning strategies and their application in regression problems. Therefore, this paper presents an optimization methodology to use with several approaches of machine learning in regression problems, maximizing the limited dataset and locating the best network topology and input vector of each network model. This methodology is tested in real regression scenarios of ballistic impact with different artificial neural models, obtaining substantial improvement in all the experiments. Furthermore, the quality stage, based on criteria of information theory, enables the determination of when the complexity of the network design does not penalize the fit over the data and thereby the selection of the best neural network model from a series of candidates. Finally, the results obtained show the relevance of this methodology and its application improves the performance and efficiency of multiple machine learning strategies in regression scenarios. More... »

PAGES

424-441

References to SciGraph publications

  • 2007-02. Prediction of the response under impact of steel armours using a multilayer perceptron in NEURAL COMPUTING AND APPLICATIONS
  • 2003-01. A Novel Self-Organizing Neural Network for Motion Segmentation in APPLIED INTELLIGENCE
  • 2007. Learning Highly Non-separable Boolean Functions Using Constructive Feedforward Neural Network in ARTIFICIAL NEURAL NETWORKS – ICANN 2007
  • 2000-05. Predicting Aflatoxin Contamination in Peanuts: A Genetic Algorithm/Neural Network Approach in APPLIED INTELLIGENCE
  • 1999-07. Approximating the Semantics of Logic Programs by Recurrent Neural Networks in APPLIED INTELLIGENCE
  • 1998-11. Incremental Feature Selection in APPLIED INTELLIGENCE
  • 1998-11. Evolutionary Learning of Modular Neural Networks with Genetic Programming in APPLIED INTELLIGENCE
  • 2004-05. Designing Polymer Blends Using Neural Networks, Genetic Algorithms, and Markov Chains in APPLIED INTELLIGENCE
  • 2004-05. A Neural Network Based Model for Prognosis of Early Breast Cancer in APPLIED INTELLIGENCE
  • 1998-01. Evolving the Topology and the Weights of Neural Networks Using a Dual Representation in APPLIED INTELLIGENCE
  • 2012-03. Improving classification performance of Support Vector Machine by genetically optimising kernel shape and hyper-parameters in APPLIED INTELLIGENCE
  • 2000-11. Neural Nets Trained by Genetic Algorithms for Collision Avoidance in APPLIED INTELLIGENCE
  • 2000-05. Variable Hidden Layer Sizing in Elman Recurrent Neuro-Evolution in APPLIED INTELLIGENCE
  • 2009-04. A modular neural network for super-resolution of human faces in APPLIED INTELLIGENCE
  • 2002-07. Modelling of Complete Robot Dynamics Based on a Multi-Dimensional, RBF-like Neural Architecture in APPLIED INTELLIGENCE
  • 1995. The Nature of Statistical Learning Theory in NONE
  • 2009. Comparison of Feature Construction Methods for Video Relevance Prediction in ADVANCES IN MULTIMEDIA MODELING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10489-010-0269-5

    DOI

    http://dx.doi.org/10.1007/s10489-010-0269-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040124611


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gonzalez-Carrasco", 
            "givenName": "Israel", 
            "id": "sg:person.012350277013.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350277013.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garcia-Crespo", 
            "givenName": "Angel", 
            "id": "sg:person.011537037147.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537037147.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ruiz-Mezcua", 
            "givenName": "Belen", 
            "id": "sg:person.015556313103.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556313103.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Carlos III University of Madrid", 
              "id": "https://www.grid.ac/institutes/grid.7840.b", 
              "name": [
                "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes, Madrid, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lopez-Cuadrado", 
            "givenName": "Jose Luis", 
            "id": "sg:person.013775622302.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775622302.48"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1008315023738", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000011644", 
              "https://doi.org/10.1023/a:1008315023738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0893-6080(02)00167-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001293195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0893-6080(02)00167-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001293195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008388118869", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001875245", 
              "https://doi.org/10.1023/a:1008388118869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008272615525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003091194", 
              "https://doi.org/10.1023/a:1008272615525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008310906900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003415952", 
              "https://doi.org/10.1023/a:1008310906900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:apin.0000021415.88365.c4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003864897", 
              "https://doi.org/10.1023/b:apin.0000021415.88365.c4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1015779731969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003911667", 
              "https://doi.org/10.1023/a:1015779731969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026507809196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005334131", 
              "https://doi.org/10.1023/a:1026507809196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10489-010-0260-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005405229", 
              "https://doi.org/10.1007/s10489-010-0260-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1996.8.3.643", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005990391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2006.10.143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008959747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2004.04.376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009461510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0045-7949(01)00083-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012415514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:apin.0000021414.50728.34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014054218", 
              "https://doi.org/10.1023/b:apin.0000021414.50728.34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(88)90020-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014553034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(88)90020-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014553034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018373874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018373874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0045-7825(01)00372-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019269698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008363719778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022668893", 
              "https://doi.org/10.1023/a:1008363719778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3800(02)00257-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025763367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3800(02)00257-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025763367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patrec.2008.08.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026543376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2440-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027312764", 
              "https://doi.org/10.1007/978-1-4757-2440-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2440-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027312764", 
              "https://doi.org/10.1007/978-1-4757-2440-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/2.2927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028383216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0957-4174(99)00053-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028687669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1995.7.1.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028787133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74690-4_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031572547", 
              "https://doi.org/10.1007/978-3-540-74690-4_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74690-4_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031572547", 
              "https://doi.org/10.1007/978-3-540-74690-4_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4018/jhcitp.2010091102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033306606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034169987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034169987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10489-007-0109-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036975799", 
              "https://doi.org/10.1007/s10489-007-0109-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10489-007-0109-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036975799", 
              "https://doi.org/10.1007/s10489-007-0109-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0305-0548(99)00149-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038808470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compstruc.2003.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041825702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compstruc.2003.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041825702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-006-0050-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041919704", 
              "https://doi.org/10.1007/s00521-006-0050-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-006-0050-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041919704", 
              "https://doi.org/10.1007/s00521-006-0050-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfracmech.2003.12.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042951002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0278-6125(05)80010-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043410163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1020970617241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047260630", 
              "https://doi.org/10.1023/a:1020970617241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1991.3.2.246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048705139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.1995.7.2.219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050102216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008376514077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050326484", 
              "https://doi.org/10.1023/a:1008376514077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1520-0442(2000)013<0287:scbnna>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051212909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-92892-8_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051789714", 
              "https://doi.org/10.1007/978-3-540-92892-8_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-92892-8_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051789714", 
              "https://doi.org/10.1007/978-3-540-92892-8_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0045-7825(02)00221-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052287877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0045-7825(02)00221-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052287877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/089976698300017197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053132543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/ip-cds:20010418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056844375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/21.155944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061121447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.825759", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.105415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.265959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061218407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.668883", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/72.870038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061219466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/pgec.1965.264137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061435370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.1974.1100705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061471419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.1972.1054863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061647145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/10/7/014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064225568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijcat.2010.034745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067441517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1403680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069473952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3844/ajassp.2006.1698.1702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071454088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ijcnn.1991.170429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086308983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icisip.2005.1529424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093249517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/047084535x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098660987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/047084535x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098660987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/047084535x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098660987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1098835059", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-03", 
        "datePublishedReg": "2012-03-01", 
        "description": "In domains with limited data, such as ballistic impact, prior researches have proven that the optimization of artificial neural models is an efficient tool for improving the performance of a classifier based on MultiLayer Perceptron. In addition, this research aims to explore, in the ballistic domain, the optimization of other machine learning strategies and their application in regression problems. Therefore, this paper presents an optimization methodology to use with several approaches of machine learning in regression problems, maximizing the limited dataset and locating the best network topology and input vector of each network model. This methodology is tested in real regression scenarios of ballistic impact with different artificial neural models, obtaining substantial improvement in all the experiments. Furthermore, the quality stage, based on criteria of information theory, enables the determination of when the complexity of the network design does not penalize the fit over the data and thereby the selection of the best neural network model from a series of candidates. Finally, the results obtained show the relevance of this methodology and its application improves the performance and efficiency of multiple machine learning strategies in regression scenarios.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10489-010-0269-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136076", 
            "issn": [
              "0924-669X", 
              "1573-7497"
            ], 
            "name": "Applied Intelligence", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "36"
          }
        ], 
        "name": "An optimization methodology for machine learning strategies and regression problems in ballistic impact scenarios", 
        "pagination": "424-441", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bf23da827a9c5a609ee0d14772438d85371c357208a407af687320eabf1ac46f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10489-010-0269-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040124611"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10489-010-0269-5", 
          "https://app.dimensions.ai/details/publication/pub.1040124611"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000592.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10489-010-0269-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10489-010-0269-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10489-010-0269-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10489-010-0269-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10489-010-0269-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    275 TRIPLES      21 PREDICATES      86 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10489-010-0269-5 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N3a4145cbe49245a48c16393763571fc1
    4 schema:citation sg:pub.10.1007/978-1-4757-2440-0
    5 sg:pub.10.1007/978-3-540-74690-4_19
    6 sg:pub.10.1007/978-3-540-92892-8_19
    7 sg:pub.10.1007/s00521-006-0050-1
    8 sg:pub.10.1007/s10489-007-0109-4
    9 sg:pub.10.1007/s10489-010-0260-1
    10 sg:pub.10.1023/a:1008272615525
    11 sg:pub.10.1023/a:1008310906900
    12 sg:pub.10.1023/a:1008315023738
    13 sg:pub.10.1023/a:1008363719778
    14 sg:pub.10.1023/a:1008376514077
    15 sg:pub.10.1023/a:1008388118869
    16 sg:pub.10.1023/a:1015779731969
    17 sg:pub.10.1023/a:1020970617241
    18 sg:pub.10.1023/a:1026507809196
    19 sg:pub.10.1023/b:apin.0000021414.50728.34
    20 sg:pub.10.1023/b:apin.0000021415.88365.c4
    21 https://app.dimensions.ai/details/publication/pub.1098835059
    22 https://doi.org/10.1002/047084535x
    23 https://doi.org/10.1016/0005-1098(78)90005-5
    24 https://doi.org/10.1016/0893-6080(88)90020-2
    25 https://doi.org/10.1016/0893-6080(89)90020-8
    26 https://doi.org/10.1016/j.compstruc.2003.06.001
    27 https://doi.org/10.1016/j.engfracmech.2003.12.004
    28 https://doi.org/10.1016/j.jmatprotec.2004.04.376
    29 https://doi.org/10.1016/j.neucom.2006.10.143
    30 https://doi.org/10.1016/j.patrec.2008.08.010
    31 https://doi.org/10.1016/s0045-7825(01)00372-3
    32 https://doi.org/10.1016/s0045-7825(02)00221-9
    33 https://doi.org/10.1016/s0045-7949(01)00083-9
    34 https://doi.org/10.1016/s0278-6125(05)80010-x
    35 https://doi.org/10.1016/s0304-3800(02)00257-0
    36 https://doi.org/10.1016/s0305-0548(99)00149-5
    37 https://doi.org/10.1016/s0893-6080(02)00167-3
    38 https://doi.org/10.1016/s0957-4174(99)00053-6
    39 https://doi.org/10.1049/ip-cds:20010418
    40 https://doi.org/10.1109/21.155944
    41 https://doi.org/10.1109/34.825759
    42 https://doi.org/10.1109/72.105415
    43 https://doi.org/10.1109/72.265959
    44 https://doi.org/10.1109/72.668883
    45 https://doi.org/10.1109/72.870038
    46 https://doi.org/10.1109/icisip.2005.1529424
    47 https://doi.org/10.1109/ijcnn.1991.170429
    48 https://doi.org/10.1109/pgec.1965.264137
    49 https://doi.org/10.1109/tac.1974.1100705
    50 https://doi.org/10.1109/tit.1972.1054863
    51 https://doi.org/10.1162/089976698300017197
    52 https://doi.org/10.1162/neco.1991.3.2.246
    53 https://doi.org/10.1162/neco.1995.7.1.108
    54 https://doi.org/10.1162/neco.1995.7.2.219
    55 https://doi.org/10.1162/neco.1996.8.3.643
    56 https://doi.org/10.1175/1520-0442(2000)013<0287:scbnna>2.0.co;2
    57 https://doi.org/10.1209/0295-5075/10/7/014
    58 https://doi.org/10.1504/ijcat.2010.034745
    59 https://doi.org/10.2307/1403680
    60 https://doi.org/10.2514/2.2927
    61 https://doi.org/10.3844/ajassp.2006.1698.1702
    62 https://doi.org/10.4018/jhcitp.2010091102
    63 schema:datePublished 2012-03
    64 schema:datePublishedReg 2012-03-01
    65 schema:description In domains with limited data, such as ballistic impact, prior researches have proven that the optimization of artificial neural models is an efficient tool for improving the performance of a classifier based on MultiLayer Perceptron. In addition, this research aims to explore, in the ballistic domain, the optimization of other machine learning strategies and their application in regression problems. Therefore, this paper presents an optimization methodology to use with several approaches of machine learning in regression problems, maximizing the limited dataset and locating the best network topology and input vector of each network model. This methodology is tested in real regression scenarios of ballistic impact with different artificial neural models, obtaining substantial improvement in all the experiments. Furthermore, the quality stage, based on criteria of information theory, enables the determination of when the complexity of the network design does not penalize the fit over the data and thereby the selection of the best neural network model from a series of candidates. Finally, the results obtained show the relevance of this methodology and its application improves the performance and efficiency of multiple machine learning strategies in regression scenarios.
    66 schema:genre research_article
    67 schema:inLanguage en
    68 schema:isAccessibleForFree false
    69 schema:isPartOf N03dc1ffa55244bc6a1e263417d48107f
    70 Nc59e09f53c224b6c9834d6ef3747c613
    71 sg:journal.1136076
    72 schema:name An optimization methodology for machine learning strategies and regression problems in ballistic impact scenarios
    73 schema:pagination 424-441
    74 schema:productId N03af979a867c443d925c19542ed85e3d
    75 Nc73d96018f4e4967858dab7dbef38a2a
    76 Nfaf37096d4cb434097a589b642d68bae
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040124611
    78 https://doi.org/10.1007/s10489-010-0269-5
    79 schema:sdDatePublished 2019-04-11T00:29
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N37965457b318477e9f02e825c226c883
    82 schema:url http://link.springer.com/10.1007%2Fs10489-010-0269-5
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N03af979a867c443d925c19542ed85e3d schema:name readcube_id
    87 schema:value bf23da827a9c5a609ee0d14772438d85371c357208a407af687320eabf1ac46f
    88 rdf:type schema:PropertyValue
    89 N03dc1ffa55244bc6a1e263417d48107f schema:issueNumber 2
    90 rdf:type schema:PublicationIssue
    91 N212e41167ec6439b83b1f952e1736e1d rdf:first sg:person.013775622302.48
    92 rdf:rest rdf:nil
    93 N3612c7c70aa84623aa35815d37abf4ff rdf:first sg:person.015556313103.67
    94 rdf:rest N212e41167ec6439b83b1f952e1736e1d
    95 N37965457b318477e9f02e825c226c883 schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 N3a4145cbe49245a48c16393763571fc1 rdf:first sg:person.012350277013.42
    98 rdf:rest N9e6156310c494d2f96f57f6b00554fc5
    99 N9e6156310c494d2f96f57f6b00554fc5 rdf:first sg:person.011537037147.86
    100 rdf:rest N3612c7c70aa84623aa35815d37abf4ff
    101 Nc59e09f53c224b6c9834d6ef3747c613 schema:volumeNumber 36
    102 rdf:type schema:PublicationVolume
    103 Nc73d96018f4e4967858dab7dbef38a2a schema:name doi
    104 schema:value 10.1007/s10489-010-0269-5
    105 rdf:type schema:PropertyValue
    106 Nfaf37096d4cb434097a589b642d68bae schema:name dimensions_id
    107 schema:value pub.1040124611
    108 rdf:type schema:PropertyValue
    109 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Information and Computing Sciences
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Artificial Intelligence and Image Processing
    114 rdf:type schema:DefinedTerm
    115 sg:journal.1136076 schema:issn 0924-669X
    116 1573-7497
    117 schema:name Applied Intelligence
    118 rdf:type schema:Periodical
    119 sg:person.011537037147.86 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    120 schema:familyName Garcia-Crespo
    121 schema:givenName Angel
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537037147.86
    123 rdf:type schema:Person
    124 sg:person.012350277013.42 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    125 schema:familyName Gonzalez-Carrasco
    126 schema:givenName Israel
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350277013.42
    128 rdf:type schema:Person
    129 sg:person.013775622302.48 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    130 schema:familyName Lopez-Cuadrado
    131 schema:givenName Jose Luis
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775622302.48
    133 rdf:type schema:Person
    134 sg:person.015556313103.67 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
    135 schema:familyName Ruiz-Mezcua
    136 schema:givenName Belen
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556313103.67
    138 rdf:type schema:Person
    139 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
    140 https://doi.org/10.1007/978-1-4757-2440-0
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/978-3-540-74690-4_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031572547
    143 https://doi.org/10.1007/978-3-540-74690-4_19
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/978-3-540-92892-8_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051789714
    146 https://doi.org/10.1007/978-3-540-92892-8_19
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s00521-006-0050-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041919704
    149 https://doi.org/10.1007/s00521-006-0050-1
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s10489-007-0109-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036975799
    152 https://doi.org/10.1007/s10489-007-0109-4
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s10489-010-0260-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005405229
    155 https://doi.org/10.1007/s10489-010-0260-1
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1023/a:1008272615525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003091194
    158 https://doi.org/10.1023/a:1008272615525
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1023/a:1008310906900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003415952
    161 https://doi.org/10.1023/a:1008310906900
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1023/a:1008315023738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000011644
    164 https://doi.org/10.1023/a:1008315023738
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1023/a:1008363719778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022668893
    167 https://doi.org/10.1023/a:1008363719778
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1023/a:1008376514077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050326484
    170 https://doi.org/10.1023/a:1008376514077
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1023/a:1008388118869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001875245
    173 https://doi.org/10.1023/a:1008388118869
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1023/a:1015779731969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003911667
    176 https://doi.org/10.1023/a:1015779731969
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1023/a:1020970617241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047260630
    179 https://doi.org/10.1023/a:1020970617241
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1023/a:1026507809196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005334131
    182 https://doi.org/10.1023/a:1026507809196
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1023/b:apin.0000021414.50728.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014054218
    185 https://doi.org/10.1023/b:apin.0000021414.50728.34
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1023/b:apin.0000021415.88365.c4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003864897
    188 https://doi.org/10.1023/b:apin.0000021415.88365.c4
    189 rdf:type schema:CreativeWork
    190 https://app.dimensions.ai/details/publication/pub.1098835059 schema:CreativeWork
    191 https://doi.org/10.1002/047084535x schema:sameAs https://app.dimensions.ai/details/publication/pub.1098660987
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/0005-1098(78)90005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018373874
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/0893-6080(88)90020-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014553034
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/0893-6080(89)90020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034169987
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.compstruc.2003.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041825702
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/j.engfracmech.2003.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042951002
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/j.jmatprotec.2004.04.376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009461510
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/j.neucom.2006.10.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008959747
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/j.patrec.2008.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026543376
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/s0045-7825(01)00372-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019269698
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/s0045-7825(02)00221-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052287877
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/s0045-7949(01)00083-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012415514
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/s0278-6125(05)80010-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043410163
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/s0304-3800(02)00257-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025763367
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/s0305-0548(99)00149-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038808470
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/s0893-6080(02)00167-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001293195
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1016/s0957-4174(99)00053-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028687669
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1049/ip-cds:20010418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056844375
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1109/21.155944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121447
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1109/34.825759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157052
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1109/72.105415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218201
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1109/72.265959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218407
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1109/72.668883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219030
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1109/72.870038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219466
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1109/icisip.2005.1529424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093249517
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1109/ijcnn.1991.170429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086308983
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1109/pgec.1965.264137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061435370
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1109/tit.1972.1054863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647145
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1162/089976698300017197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053132543
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1162/neco.1991.3.2.246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048705139
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1162/neco.1995.7.1.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028787133
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1162/neco.1995.7.2.219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050102216
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1162/neco.1996.8.3.643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005990391
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1175/1520-0442(2000)013<0287:scbnna>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051212909
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1209/0295-5075/10/7/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064225568
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1504/ijcat.2010.034745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067441517
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.2307/1403680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069473952
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.2514/2.2927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028383216
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.3844/ajassp.2006.1698.1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071454088
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.4018/jhcitp.2010091102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033306606
    272 rdf:type schema:CreativeWork
    273 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
    274 schema:name Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes, Madrid, Spain
    275 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...