Dealing with limited data in ballistic impact scenarios: an empirical comparison of different neural network approaches View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-08

AUTHORS

Israel Gonzalez-Carrasco, Angel Garcia-Crespo, Belen Ruiz-Mezcua, Jose Luis Lopez-Cuadrado

ABSTRACT

In the domain of high-speed impact between solids, the simulation of one trial entails the use of large resources and an elevated computational cost. The objective of this research is to find the best neural network associated with a new problem of ballistic impact, maximizing the quantity of trials available and simplifying their architecture. To achieve this goal, this paper proposes a tuning performance process based on four stages. These stages include existing statistical techniques, a combination of proposals to improve the performance and analyze the influence of each variable. To measure the quality of the different networks, two criteria based on information theory have been incorporated to reflect the fit of the data with respect to their complexity. The results obtained show that the application of an integrated tuning process in this domain permits improvement in the performance and efficiency of a neural network in comparison with different machine learning alternatives More... »

PAGES

89-109

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10489-009-0205-8

DOI

http://dx.doi.org/10.1007/s10489-009-0205-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046651906


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes (Madrid), Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonzalez-Carrasco", 
        "givenName": "Israel", 
        "id": "sg:person.012350277013.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350277013.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes (Madrid), Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia-Crespo", 
        "givenName": "Angel", 
        "id": "sg:person.011537037147.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537037147.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes (Madrid), Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruiz-Mezcua", 
        "givenName": "Belen", 
        "id": "sg:person.015556313103.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556313103.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes (Madrid), Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lopez-Cuadrado", 
        "givenName": "Jose Luis", 
        "id": "sg:person.013775622302.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775622302.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0893-6080(02)00167-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001293195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(02)00167-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001293195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/168304.168306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002182252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002929950", 
          "https://doi.org/10.1007/bf00058655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2005.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005053094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1996.8.3.643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005990391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2007.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008177584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-7439(93)80052-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008504997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2006.10.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008959747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7949(01)00083-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012415514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176344552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012894299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0734-743x(99)00011-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013277182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2008.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014160756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007515423169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017116781", 
          "https://doi.org/10.1023/a:1007515423169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018373874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018373874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-743x(87)90029-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018440657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008363719778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022668893", 
          "https://doi.org/10.1023/a:1008363719778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02551274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023250347", 
          "https://doi.org/10.1007/bf02551274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02551274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023250347", 
          "https://doi.org/10.1007/bf02551274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24677-0_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024294996", 
          "https://doi.org/10.1007/978-3-540-24677-0_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24677-0_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024294996", 
          "https://doi.org/10.1007/978-3-540-24677-0_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(02)00257-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025763367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3800(02)00257-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025763367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7225(83)90105-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025940886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7225(83)90105-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025940886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.2927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028383216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1995.7.1.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028787133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2004.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029394675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1996.8.1.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032145208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-006-0028-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032754795", 
          "https://doi.org/10.1007/s10489-006-0028-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-006-0028-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032754795", 
          "https://doi.org/10.1007/s10489-006-0028-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90020-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034169987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30134-9_71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034220675", 
          "https://doi.org/10.1007/978-3-540-30134-9_71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30134-9_71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034220675", 
          "https://doi.org/10.1007/978-3-540-30134-9_71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8667.1989.tb00026.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034664427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8667.1989.tb00026.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034664427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(91)90033-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040786575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(91)90033-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040786575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-2311-7_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041001793", 
          "https://doi.org/10.1007/978-90-481-2311-7_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-2311-7_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041001793", 
          "https://doi.org/10.1007/978-90-481-2311-7_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2003.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041825702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2003.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041825702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-006-0050-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041919704", 
          "https://doi.org/10.1007/s00521-006-0050-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-006-0050-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041919704", 
          "https://doi.org/10.1007/s00521-006-0050-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engfracmech.2003.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042951002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(74)90050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046217549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(74)90050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046217549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1991.3.2.246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048705139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1997.9.6.1245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048881401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1995.7.2.219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050102216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(02)00221-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052287877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(02)00221-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052287877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-cds:20010418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056844375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.155944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061121447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.825759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.105415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.329683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.668883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.870038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/massp.1987.1165576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061385413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pgec.1965.264137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061435370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1974.1100705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061471419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2005.858321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061565577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2005.858321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061565577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1972.1054863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061647145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/10/7/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064225568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1403680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069473952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3844/ajassp.2006.1698.1702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071454088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.1991.170429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086308983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icisip.2005.1529424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093249517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/047084535x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098660987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/047084535x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098660987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/047084535x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098660987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1098835059", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105579486"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-08", 
    "datePublishedReg": "2011-08-01", 
    "description": "In the domain of high-speed impact between solids, the simulation of one trial entails the use of large resources and an elevated computational cost. The objective of this research is to find the best neural network associated with a new problem of ballistic impact, maximizing the quantity of trials available and simplifying their architecture. To achieve this goal, this paper proposes a tuning performance process based on four stages. These stages include existing statistical techniques, a combination of proposals to improve the performance and analyze the influence of each variable. To measure the quality of the different networks, two criteria based on information theory have been incorporated to reflect the fit of the data with respect to their complexity. The results obtained show that the application of an integrated tuning process in this domain permits improvement in the performance and efficiency of a neural network in comparison with different machine learning alternatives", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10489-009-0205-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136076", 
        "issn": [
          "0924-669X", 
          "1573-7497"
        ], 
        "name": "Applied Intelligence", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Dealing with limited data in ballistic impact scenarios: an empirical comparison of different neural network approaches", 
    "pagination": "89-109", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "de3b01e52f61b36fd29a7792605a80e0f61845aa6bc960acbd87d94722955aa9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10489-009-0205-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046651906"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10489-009-0205-8", 
      "https://app.dimensions.ai/details/publication/pub.1046651906"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000594.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10489-009-0205-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10489-009-0205-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10489-009-0205-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10489-009-0205-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10489-009-0205-8'


 

This table displays all metadata directly associated to this object as RDF triples.

268 TRIPLES      21 PREDICATES      86 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10489-009-0205-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N87a4a64dab1c42b2a452e24e5934dfb1
4 schema:citation sg:pub.10.1007/978-1-4757-2440-0
5 sg:pub.10.1007/978-3-540-24677-0_1
6 sg:pub.10.1007/978-3-540-30134-9_71
7 sg:pub.10.1007/978-90-481-2311-7_32
8 sg:pub.10.1007/bf00058655
9 sg:pub.10.1007/bf02551274
10 sg:pub.10.1007/s00521-006-0050-1
11 sg:pub.10.1007/s10489-006-0028-9
12 sg:pub.10.1023/a:1007515423169
13 sg:pub.10.1023/a:1008363719778
14 https://app.dimensions.ai/details/publication/pub.1098835059
15 https://doi.org/10.1002/047084535x
16 https://doi.org/10.1016/0005-1098(78)90005-5
17 https://doi.org/10.1016/0020-7225(83)90105-2
18 https://doi.org/10.1016/0020-7683(74)90050-x
19 https://doi.org/10.1016/0169-7439(93)80052-j
20 https://doi.org/10.1016/0734-743x(87)90029-7
21 https://doi.org/10.1016/0893-6080(89)90020-8
22 https://doi.org/10.1016/0893-6080(91)90033-2
23 https://doi.org/10.1016/j.compstruc.2003.06.001
24 https://doi.org/10.1016/j.engappai.2008.02.007
25 https://doi.org/10.1016/j.engfracmech.2003.12.004
26 https://doi.org/10.1016/j.neucom.2004.04.007
27 https://doi.org/10.1016/j.neucom.2005.07.010
28 https://doi.org/10.1016/j.neucom.2006.10.143
29 https://doi.org/10.1016/j.neucom.2007.06.004
30 https://doi.org/10.1016/s0045-7825(02)00221-9
31 https://doi.org/10.1016/s0045-7949(01)00083-9
32 https://doi.org/10.1016/s0304-3800(02)00257-0
33 https://doi.org/10.1016/s0734-743x(99)00011-1
34 https://doi.org/10.1016/s0893-6080(02)00167-3
35 https://doi.org/10.1049/ip-cds:20010418
36 https://doi.org/10.1109/21.155944
37 https://doi.org/10.1109/34.825759
38 https://doi.org/10.1109/72.105415
39 https://doi.org/10.1109/72.329683
40 https://doi.org/10.1109/72.668883
41 https://doi.org/10.1109/72.870038
42 https://doi.org/10.1109/icisip.2005.1529424
43 https://doi.org/10.1109/ijcnn.1991.170429
44 https://doi.org/10.1109/massp.1987.1165576
45 https://doi.org/10.1109/pgec.1965.264137
46 https://doi.org/10.1109/tac.1974.1100705
47 https://doi.org/10.1109/tcsi.2005.858321
48 https://doi.org/10.1109/tit.1972.1054863
49 https://doi.org/10.1111/j.1467-8667.1989.tb00026.x
50 https://doi.org/10.1145/168304.168306
51 https://doi.org/10.1162/neco.1991.3.2.246
52 https://doi.org/10.1162/neco.1995.7.1.108
53 https://doi.org/10.1162/neco.1995.7.2.219
54 https://doi.org/10.1162/neco.1996.8.1.152
55 https://doi.org/10.1162/neco.1996.8.3.643
56 https://doi.org/10.1162/neco.1997.9.6.1245
57 https://doi.org/10.1209/0295-5075/10/7/014
58 https://doi.org/10.1214/aos/1176344552
59 https://doi.org/10.1613/jair.614
60 https://doi.org/10.2307/1403680
61 https://doi.org/10.2514/2.2927
62 https://doi.org/10.3844/ajassp.2006.1698.1702
63 schema:datePublished 2011-08
64 schema:datePublishedReg 2011-08-01
65 schema:description In the domain of high-speed impact between solids, the simulation of one trial entails the use of large resources and an elevated computational cost. The objective of this research is to find the best neural network associated with a new problem of ballistic impact, maximizing the quantity of trials available and simplifying their architecture. To achieve this goal, this paper proposes a tuning performance process based on four stages. These stages include existing statistical techniques, a combination of proposals to improve the performance and analyze the influence of each variable. To measure the quality of the different networks, two criteria based on information theory have been incorporated to reflect the fit of the data with respect to their complexity. The results obtained show that the application of an integrated tuning process in this domain permits improvement in the performance and efficiency of a neural network in comparison with different machine learning alternatives
66 schema:genre research_article
67 schema:inLanguage en
68 schema:isAccessibleForFree false
69 schema:isPartOf Na663213537404f1fb84a7ce3674cccc8
70 Nac1020aaa1b3407e9716484040c030e5
71 sg:journal.1136076
72 schema:name Dealing with limited data in ballistic impact scenarios: an empirical comparison of different neural network approaches
73 schema:pagination 89-109
74 schema:productId N2a253b20ccd047e09e08ee55447230e0
75 N49c0a4232d6e4e54be0d65740e2b1bf9
76 N586ec758395d42b5b6cf82ad76521c3f
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046651906
78 https://doi.org/10.1007/s10489-009-0205-8
79 schema:sdDatePublished 2019-04-11T00:29
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Ne3307e814a204598a7e491a54f200779
82 schema:url http://link.springer.com/10.1007%2Fs10489-009-0205-8
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N2a253b20ccd047e09e08ee55447230e0 schema:name doi
87 schema:value 10.1007/s10489-009-0205-8
88 rdf:type schema:PropertyValue
89 N38e20a741b3347388ede4366222157e9 rdf:first sg:person.011537037147.86
90 rdf:rest N6e6bb50f191246118f2465c51b4d8346
91 N49c0a4232d6e4e54be0d65740e2b1bf9 schema:name readcube_id
92 schema:value de3b01e52f61b36fd29a7792605a80e0f61845aa6bc960acbd87d94722955aa9
93 rdf:type schema:PropertyValue
94 N586ec758395d42b5b6cf82ad76521c3f schema:name dimensions_id
95 schema:value pub.1046651906
96 rdf:type schema:PropertyValue
97 N6e6bb50f191246118f2465c51b4d8346 rdf:first sg:person.015556313103.67
98 rdf:rest Necb2df3f43194ebc9c0686f0378de550
99 N87a4a64dab1c42b2a452e24e5934dfb1 rdf:first sg:person.012350277013.42
100 rdf:rest N38e20a741b3347388ede4366222157e9
101 Na663213537404f1fb84a7ce3674cccc8 schema:volumeNumber 35
102 rdf:type schema:PublicationVolume
103 Nac1020aaa1b3407e9716484040c030e5 schema:issueNumber 1
104 rdf:type schema:PublicationIssue
105 Ne3307e814a204598a7e491a54f200779 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Necb2df3f43194ebc9c0686f0378de550 rdf:first sg:person.013775622302.48
108 rdf:rest rdf:nil
109 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
110 schema:name Information and Computing Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
113 schema:name Artificial Intelligence and Image Processing
114 rdf:type schema:DefinedTerm
115 sg:journal.1136076 schema:issn 0924-669X
116 1573-7497
117 schema:name Applied Intelligence
118 rdf:type schema:Periodical
119 sg:person.011537037147.86 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
120 schema:familyName Garcia-Crespo
121 schema:givenName Angel
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537037147.86
123 rdf:type schema:Person
124 sg:person.012350277013.42 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
125 schema:familyName Gonzalez-Carrasco
126 schema:givenName Israel
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012350277013.42
128 rdf:type schema:Person
129 sg:person.013775622302.48 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
130 schema:familyName Lopez-Cuadrado
131 schema:givenName Jose Luis
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013775622302.48
133 rdf:type schema:Person
134 sg:person.015556313103.67 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
135 schema:familyName Ruiz-Mezcua
136 schema:givenName Belen
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556313103.67
138 rdf:type schema:Person
139 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
140 https://doi.org/10.1007/978-1-4757-2440-0
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/978-3-540-24677-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024294996
143 https://doi.org/10.1007/978-3-540-24677-0_1
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/978-3-540-30134-9_71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034220675
146 https://doi.org/10.1007/978-3-540-30134-9_71
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/978-90-481-2311-7_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041001793
149 https://doi.org/10.1007/978-90-481-2311-7_32
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
152 https://doi.org/10.1007/bf00058655
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/bf02551274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023250347
155 https://doi.org/10.1007/bf02551274
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s00521-006-0050-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041919704
158 https://doi.org/10.1007/s00521-006-0050-1
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10489-006-0028-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032754795
161 https://doi.org/10.1007/s10489-006-0028-9
162 rdf:type schema:CreativeWork
163 sg:pub.10.1023/a:1007515423169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017116781
164 https://doi.org/10.1023/a:1007515423169
165 rdf:type schema:CreativeWork
166 sg:pub.10.1023/a:1008363719778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022668893
167 https://doi.org/10.1023/a:1008363719778
168 rdf:type schema:CreativeWork
169 https://app.dimensions.ai/details/publication/pub.1098835059 schema:CreativeWork
170 https://doi.org/10.1002/047084535x schema:sameAs https://app.dimensions.ai/details/publication/pub.1098660987
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/0005-1098(78)90005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018373874
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0020-7225(83)90105-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025940886
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/0020-7683(74)90050-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046217549
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0169-7439(93)80052-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1008504997
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/0734-743x(87)90029-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018440657
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/0893-6080(89)90020-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034169987
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/0893-6080(91)90033-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040786575
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.compstruc.2003.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041825702
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.engappai.2008.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014160756
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.engfracmech.2003.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042951002
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.neucom.2004.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029394675
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.neucom.2005.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005053094
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.neucom.2006.10.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008959747
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.neucom.2007.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008177584
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/s0045-7825(02)00221-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052287877
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s0045-7949(01)00083-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012415514
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s0304-3800(02)00257-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025763367
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s0734-743x(99)00011-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013277182
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s0893-6080(02)00167-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001293195
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1049/ip-cds:20010418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056844375
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/21.155944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121447
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1109/34.825759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157052
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/72.105415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218201
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1109/72.329683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218503
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1109/72.668883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219030
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/72.870038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219466
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1109/icisip.2005.1529424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093249517
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1109/ijcnn.1991.170429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086308983
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1109/massp.1987.1165576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061385413
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1109/pgec.1965.264137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061435370
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1109/tcsi.2005.858321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061565577
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1109/tit.1972.1054863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647145
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1111/j.1467-8667.1989.tb00026.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034664427
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1145/168304.168306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002182252
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1162/neco.1991.3.2.246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048705139
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1162/neco.1995.7.1.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028787133
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1162/neco.1995.7.2.219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050102216
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1162/neco.1996.8.1.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032145208
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1162/neco.1996.8.3.643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005990391
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1162/neco.1997.9.6.1245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048881401
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1209/0295-5075/10/7/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064225568
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1214/aos/1176344552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012894299
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1613/jair.614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579486
259 rdf:type schema:CreativeWork
260 https://doi.org/10.2307/1403680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069473952
261 rdf:type schema:CreativeWork
262 https://doi.org/10.2514/2.2927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028383216
263 rdf:type schema:CreativeWork
264 https://doi.org/10.3844/ajassp.2006.1698.1702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071454088
265 rdf:type schema:CreativeWork
266 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
267 schema:name Department of Computer Science, Universidad Carlos III, Av. Universidad 30, 28911, Leganes (Madrid), Spain
268 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...