Pseudoalgebras and Non-canonical Isomorphisms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Fernando Lucatelli Nunes

ABSTRACT

Given a pseudomonad T, we prove that a lax T-morphism between pseudoalgebras is a T-pseudomorphism if and only if there is a suitable (possibly non-canonical) invertible T-transformation. This result encompasses several results on non-canonical isomorphisms, including Lack’s result on normal monoidal functors between braided monoidal categories, since it is applicable in any 2-category of pseudoalgebras, such as the 2-categories of monoidal categories, cocomplete categories, bicategories, pseudofunctors and so on. More... »

PAGES

1-9

References to SciGraph publications

  • 1974. Doctrinal adjunction in CATEGORY SEMINAR
  • Journal

    TITLE

    Applied Categorical Structures

    ISSUE

    N/A

    VOLUME

    N/A

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10485-018-9541-3

    DOI

    http://dx.doi.org/10.1007/s10485-018-9541-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107037545


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Coimbra", 
              "id": "https://www.grid.ac/institutes/grid.8051.c", 
              "name": [
                "CMUC, Department of Mathematics, University of Coimbra, 3001-501, Coimbra, Portugal"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lucatelli Nunes", 
            "givenName": "Fernando", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.jpaa.2011.07.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013189767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0063105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015860203", 
              "https://doi.org/10.1007/bfb0063105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-4049(89)90160-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031307050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.entcs.2004.06.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033645360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-4049(94)00111-u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034495728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-4049(99)00063-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042067668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aim.2015.01.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042519847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/aima.1999.1881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043561337"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "Given a pseudomonad T, we prove that a lax T-morphism between pseudoalgebras is a T-pseudomorphism if and only if there is a suitable (possibly non-canonical) invertible T-transformation. This result encompasses several results on non-canonical isomorphisms, including Lack\u2019s result on normal monoidal functors between braided monoidal categories, since it is applicable in any 2-category of pseudoalgebras, such as the 2-categories of monoidal categories, cocomplete categories, bicategories, pseudofunctors and so on.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10485-018-9541-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136064", 
            "issn": [
              "0927-2852", 
              "1572-9095"
            ], 
            "name": "Applied Categorical Structures", 
            "type": "Periodical"
          }
        ], 
        "name": "Pseudoalgebras and Non-canonical Isomorphisms", 
        "pagination": "1-9", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "49a5e07c0dd06bcf05e6eeaf6e8c5c28e9804525df124750d2fe1c9943896411"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10485-018-9541-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107037545"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10485-018-9541-3", 
          "https://app.dimensions.ai/details/publication/pub.1107037545"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000526.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10485-018-9541-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10485-018-9541-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10485-018-9541-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10485-018-9541-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10485-018-9541-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    79 TRIPLES      21 PREDICATES      33 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10485-018-9541-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N45d2ab4519e8463ea11167ca66dca031
    4 schema:citation sg:pub.10.1007/bfb0063105
    5 https://doi.org/10.1006/aima.1999.1881
    6 https://doi.org/10.1016/0022-4049(89)90160-6
    7 https://doi.org/10.1016/0022-4049(94)00111-u
    8 https://doi.org/10.1016/j.aim.2015.01.015
    9 https://doi.org/10.1016/j.entcs.2004.06.048
    10 https://doi.org/10.1016/j.jpaa.2011.07.012
    11 https://doi.org/10.1016/s0022-4049(99)00063-8
    12 schema:datePublished 2019-02
    13 schema:datePublishedReg 2019-02-01
    14 schema:description Given a pseudomonad T, we prove that a lax T-morphism between pseudoalgebras is a T-pseudomorphism if and only if there is a suitable (possibly non-canonical) invertible T-transformation. This result encompasses several results on non-canonical isomorphisms, including Lack’s result on normal monoidal functors between braided monoidal categories, since it is applicable in any 2-category of pseudoalgebras, such as the 2-categories of monoidal categories, cocomplete categories, bicategories, pseudofunctors and so on.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf sg:journal.1136064
    19 schema:name Pseudoalgebras and Non-canonical Isomorphisms
    20 schema:pagination 1-9
    21 schema:productId N79a2005d77b84f96a3622c9753194832
    22 Nba68a6b5e6634344a9e96c4ef5555803
    23 Ne8e473852d554eb08b820b17643738fa
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107037545
    25 https://doi.org/10.1007/s10485-018-9541-3
    26 schema:sdDatePublished 2019-04-10T15:04
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N368d0d2da83e4425b43179b2bb04f68d
    29 schema:url http://link.springer.com/10.1007%2Fs10485-018-9541-3
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N368d0d2da83e4425b43179b2bb04f68d schema:name Springer Nature - SN SciGraph project
    34 rdf:type schema:Organization
    35 N450ab3ce2e794e6c9f7085c4809ae9fb schema:affiliation https://www.grid.ac/institutes/grid.8051.c
    36 schema:familyName Lucatelli Nunes
    37 schema:givenName Fernando
    38 rdf:type schema:Person
    39 N45d2ab4519e8463ea11167ca66dca031 rdf:first N450ab3ce2e794e6c9f7085c4809ae9fb
    40 rdf:rest rdf:nil
    41 N79a2005d77b84f96a3622c9753194832 schema:name doi
    42 schema:value 10.1007/s10485-018-9541-3
    43 rdf:type schema:PropertyValue
    44 Nba68a6b5e6634344a9e96c4ef5555803 schema:name dimensions_id
    45 schema:value pub.1107037545
    46 rdf:type schema:PropertyValue
    47 Ne8e473852d554eb08b820b17643738fa schema:name readcube_id
    48 schema:value 49a5e07c0dd06bcf05e6eeaf6e8c5c28e9804525df124750d2fe1c9943896411
    49 rdf:type schema:PropertyValue
    50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Mathematical Sciences
    52 rdf:type schema:DefinedTerm
    53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Pure Mathematics
    55 rdf:type schema:DefinedTerm
    56 sg:journal.1136064 schema:issn 0927-2852
    57 1572-9095
    58 schema:name Applied Categorical Structures
    59 rdf:type schema:Periodical
    60 sg:pub.10.1007/bfb0063105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015860203
    61 https://doi.org/10.1007/bfb0063105
    62 rdf:type schema:CreativeWork
    63 https://doi.org/10.1006/aima.1999.1881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043561337
    64 rdf:type schema:CreativeWork
    65 https://doi.org/10.1016/0022-4049(89)90160-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031307050
    66 rdf:type schema:CreativeWork
    67 https://doi.org/10.1016/0022-4049(94)00111-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1034495728
    68 rdf:type schema:CreativeWork
    69 https://doi.org/10.1016/j.aim.2015.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042519847
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1016/j.entcs.2004.06.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033645360
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1016/j.jpaa.2011.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013189767
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1016/s0022-4049(99)00063-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042067668
    76 rdf:type schema:CreativeWork
    77 https://www.grid.ac/institutes/grid.8051.c schema:alternateName University of Coimbra
    78 schema:name CMUC, Department of Mathematics, University of Coimbra, 3001-501, Coimbra, Portugal
    79 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...