Algebras of Higher Operads as Enriched Categories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-02

AUTHORS

Michael Batanin, Mark Weber

ABSTRACT

One of the open problems in higher category theory is the systematic construction of the higher dimensional analogues of the Gray tensor product. In this paper we begin to adapt the machinery of globular operads (Batanin, Adv Math 136:39–103, 1998) to this task. We present a general construction of a tensor product on the category of n-globular sets from any normalised (n + 1)-operad A, in such a way that the algebras for A may be recaptured as enriched categories for the induced tensor product. This is an important step in reconciling the globular and simplicial approaches to higher category theory, because in the simplicial approaches one proceeds inductively following the idea that a weak (n + 1)-category is something like a category enriched in weak n-categories. In this paper we reveal how such an intuition may be formulated in terms of globular operads. More... »

PAGES

93-135

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10485-008-9179-7

DOI

http://dx.doi.org/10.1007/s10485-008-9179-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032706501


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Macquarie University", 
          "id": "https://www.grid.ac/institutes/grid.1004.5", 
          "name": [
            "Department of Mathematics, Macquarie University, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Batanin", 
        "givenName": "Michael", 
        "id": "sg:person.012607416545.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012607416545.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Paris Diderot University", 
          "id": "https://www.grid.ac/institutes/grid.7452.4", 
          "name": [
            "Laboratoire PPS, Universit\u00e9 Paris Diderot, Paris 7, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weber", 
        "givenName": "Mark", 
        "id": "sg:person.011715035603.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011715035603.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/aima.1998.1724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003843856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-4049(02)00136-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011587189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1353/ajm.2004.0038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032030817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2007.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043729677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2006.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051945749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-4049(93)90035-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052922450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/318/05545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089200499"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-02", 
    "datePublishedReg": "2011-02-01", 
    "description": "One of the open problems in higher category theory is the systematic construction of the higher dimensional analogues of the Gray tensor product. In this paper we begin to adapt the machinery of globular operads (Batanin, Adv Math 136:39\u2013103, 1998) to this task. We present a general construction of a tensor product on the category of n-globular sets from any normalised (n + 1)-operad A, in such a way that the algebras for A may be recaptured as enriched categories for the induced tensor product. This is an important step in reconciling the globular and simplicial approaches to higher category theory, because in the simplicial approaches one proceeds inductively following the idea that a weak (n + 1)-category is something like a category enriched in weak n-categories. In this paper we reveal how such an intuition may be formulated in terms of globular operads.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10485-008-9179-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136064", 
        "issn": [
          "0927-2852", 
          "1572-9095"
        ], 
        "name": "Applied Categorical Structures", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Algebras of Higher Operads as Enriched Categories", 
    "pagination": "93-135", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9bcf7e3b96f6ef202fac0fc4edbcd59d8ec629a37bd60f43c4578271461dfce7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10485-008-9179-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032706501"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10485-008-9179-7", 
      "https://app.dimensions.ai/details/publication/pub.1032706501"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10485-008-9179-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10485-008-9179-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10485-008-9179-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10485-008-9179-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10485-008-9179-7'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10485-008-9179-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne3601f3ab27947a683435c4d7dd7bf50
4 schema:citation https://doi.org/10.1006/aima.1998.1724
5 https://doi.org/10.1016/0022-4049(93)90035-r
6 https://doi.org/10.1016/j.aim.2006.12.006
7 https://doi.org/10.1016/j.aim.2007.06.014
8 https://doi.org/10.1016/s0022-4049(02)00136-6
9 https://doi.org/10.1090/conm/318/05545
10 https://doi.org/10.1090/memo/0558
11 https://doi.org/10.1353/ajm.2004.0038
12 schema:datePublished 2011-02
13 schema:datePublishedReg 2011-02-01
14 schema:description One of the open problems in higher category theory is the systematic construction of the higher dimensional analogues of the Gray tensor product. In this paper we begin to adapt the machinery of globular operads (Batanin, Adv Math 136:39–103, 1998) to this task. We present a general construction of a tensor product on the category of n-globular sets from any normalised (n + 1)-operad A, in such a way that the algebras for A may be recaptured as enriched categories for the induced tensor product. This is an important step in reconciling the globular and simplicial approaches to higher category theory, because in the simplicial approaches one proceeds inductively following the idea that a weak (n + 1)-category is something like a category enriched in weak n-categories. In this paper we reveal how such an intuition may be formulated in terms of globular operads.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N7f53314047054614bf81a18861415463
19 Nc4b502762e6540de95f364a19eff2880
20 sg:journal.1136064
21 schema:name Algebras of Higher Operads as Enriched Categories
22 schema:pagination 93-135
23 schema:productId N28f02863b27c4a52b1ade42ecbb9ed31
24 N8ec080fd2b5b4189b384f59141bd6c23
25 Need12c0eaae1454aa358ef1465e4d24a
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032706501
27 https://doi.org/10.1007/s10485-008-9179-7
28 schema:sdDatePublished 2019-04-11T00:09
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Ned89f5e60f3141f4af78e71fd202811b
31 schema:url http://link.springer.com/10.1007/s10485-008-9179-7
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N28f02863b27c4a52b1ade42ecbb9ed31 schema:name dimensions_id
36 schema:value pub.1032706501
37 rdf:type schema:PropertyValue
38 N4e47cca8734b4b78a73e291b5ebe8ad8 rdf:first sg:person.011715035603.86
39 rdf:rest rdf:nil
40 N7f53314047054614bf81a18861415463 schema:issueNumber 1
41 rdf:type schema:PublicationIssue
42 N8ec080fd2b5b4189b384f59141bd6c23 schema:name readcube_id
43 schema:value 9bcf7e3b96f6ef202fac0fc4edbcd59d8ec629a37bd60f43c4578271461dfce7
44 rdf:type schema:PropertyValue
45 Nc4b502762e6540de95f364a19eff2880 schema:volumeNumber 19
46 rdf:type schema:PublicationVolume
47 Ne3601f3ab27947a683435c4d7dd7bf50 rdf:first sg:person.012607416545.73
48 rdf:rest N4e47cca8734b4b78a73e291b5ebe8ad8
49 Ned89f5e60f3141f4af78e71fd202811b schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Need12c0eaae1454aa358ef1465e4d24a schema:name doi
52 schema:value 10.1007/s10485-008-9179-7
53 rdf:type schema:PropertyValue
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1136064 schema:issn 0927-2852
61 1572-9095
62 schema:name Applied Categorical Structures
63 rdf:type schema:Periodical
64 sg:person.011715035603.86 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
65 schema:familyName Weber
66 schema:givenName Mark
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011715035603.86
68 rdf:type schema:Person
69 sg:person.012607416545.73 schema:affiliation https://www.grid.ac/institutes/grid.1004.5
70 schema:familyName Batanin
71 schema:givenName Michael
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012607416545.73
73 rdf:type schema:Person
74 https://doi.org/10.1006/aima.1998.1724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003843856
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/0022-4049(93)90035-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1052922450
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/j.aim.2006.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051945749
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/j.aim.2007.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043729677
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/s0022-4049(02)00136-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011587189
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1090/conm/318/05545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089200499
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1090/memo/0558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343607
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1353/ajm.2004.0038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032030817
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.1004.5 schema:alternateName Macquarie University
91 schema:name Department of Mathematics, Macquarie University, Sydney, Australia
92 rdf:type schema:Organization
93 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
94 schema:name Laboratoire PPS, Université Paris Diderot, Paris 7, France
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...