Lattice Boltzmann simulations of high-order statistics in isotropic turbulent flows View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-01

AUTHORS

Guodong Jin, Shizhao Wang, Yun Wang, Guowei He

ABSTRACT

The lattice Boltzmann method (LBM) is coupled with the multiple-relaxation-time (MRT) collision model and the three-dimensional 19-discrete-velocity (D3Q19) model to resolve intermittent behaviors on small scales in isotropic turbulent flows. The high-order scaling exponents of the velocity structure functions, the probability distribution functions of Lagrangian accelerations, and the local energy dissipation rates are investigated. The self-similarity of the space-time velocity structure functions is explored using the extended self-similarity (ESS) method, which was originally developed for velocity spatial structure functions. The scaling exponents of spatial structure functions at up to ten orders are consistent with the experimental measurements and theoretical results, implying that the LBM can accurately resolve the intermittent behaviors. This validation provides a solid basis for using the LBM to study more complex processes that are sensitive to small scales in turbulent flows, such as the relative dispersion of pollutants and mesoscale structures of preferential concentration of heavy particles suspended in turbulent flows. More... »

PAGES

21-30

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10483-018-2254-9

DOI

http://dx.doi.org/10.1007/s10483-018-2254-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100112732


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Stake Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "School of Engineering Science, University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Guodong", 
        "id": "sg:person.014076614663.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014076614663.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Stake Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "School of Engineering Science, University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Shizhao", 
        "id": "sg:person.010261712565.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010261712565.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Stake Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "School of Engineering Science, University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yun", 
        "id": "sg:person.016502742762.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016502742762.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Stake Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "School of Engineering Science, University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Guowei", 
        "id": "sg:person.015510251653.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015510251653.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0142-727x(96)00044-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005000017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01341754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006497341", 
          "https://doi.org/10.1007/bf01341754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2009.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013376170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2016.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015016391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017519688", 
          "https://doi.org/10.1038/nature00983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017519688", 
          "https://doi.org/10.1038/nature00983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.partic.2010.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018074415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.064502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019395399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.064502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019395399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.214501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020526152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.214501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020526152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2001.0955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022491816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112091001957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023353374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fluid.30.1.539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030446716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.5044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034557877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.5044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034557877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fluid.36.050802.122015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053175979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2015.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053831550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2015.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053831550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112087000892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053831915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112084000513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053847990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112004001326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053858341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112002001842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053935725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112000008661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054033795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2016.448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054052376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2016.448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054052376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002211200500844x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054063604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.870050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058122195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/6/1/116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059138029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.r5339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.r5339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.r29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.r29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.6546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.6546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.94.043304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060750724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.94.043304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060750724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183197000746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062906732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/17/6/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064228747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i1996-00472-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064234570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511840531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098697945"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01", 
    "datePublishedReg": "2018-01-01", 
    "description": "The lattice Boltzmann method (LBM) is coupled with the multiple-relaxation-time (MRT) collision model and the three-dimensional 19-discrete-velocity (D3Q19) model to resolve intermittent behaviors on small scales in isotropic turbulent flows. The high-order scaling exponents of the velocity structure functions, the probability distribution functions of Lagrangian accelerations, and the local energy dissipation rates are investigated. The self-similarity of the space-time velocity structure functions is explored using the extended self-similarity (ESS) method, which was originally developed for velocity spatial structure functions. The scaling exponents of spatial structure functions at up to ten orders are consistent with the experimental measurements and theoretical results, implying that the LBM can accurately resolve the intermittent behaviors. This validation provides a solid basis for using the LBM to study more complex processes that are sensitive to small scales in turbulent flows, such as the relative dispersion of pollutants and mesoscale structures of preferential concentration of heavy particles suspended in turbulent flows.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10483-018-2254-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327801", 
        "issn": [
          "0253-4827", 
          "1000-0887"
        ], 
        "name": "Applied Mathematics and Mechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "Lattice Boltzmann simulations of high-order statistics in isotropic turbulent flows", 
    "pagination": "21-30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ec651c23d186de148cd57b10abd471e9193afc85bdd3afcc771c9dff4ac2fb83"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10483-018-2254-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100112732"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10483-018-2254-9", 
      "https://app.dimensions.ai/details/publication/pub.1100112732"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s10483-018-2254-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10483-018-2254-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10483-018-2254-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10483-018-2254-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10483-018-2254-9'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10483-018-2254-9 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nc56b8b963bf84d74aa08f9b14c4af22a
4 schema:citation sg:pub.10.1007/bf01341754
5 sg:pub.10.1038/nature00983
6 https://doi.org/10.1016/0142-727x(96)00044-6
7 https://doi.org/10.1016/j.camwa.2016.06.017
8 https://doi.org/10.1016/j.compfluid.2009.10.002
9 https://doi.org/10.1016/j.partic.2010.07.003
10 https://doi.org/10.1017/cbo9780511840531
11 https://doi.org/10.1017/jfm.2015.122
12 https://doi.org/10.1017/jfm.2016.448
13 https://doi.org/10.1017/s0022112000008661
14 https://doi.org/10.1017/s0022112002001842
15 https://doi.org/10.1017/s0022112004001326
16 https://doi.org/10.1017/s002211200500844x
17 https://doi.org/10.1017/s0022112084000513
18 https://doi.org/10.1017/s0022112087000892
19 https://doi.org/10.1017/s0022112091001957
20 https://doi.org/10.1063/1.870050
21 https://doi.org/10.1088/1367-2630/6/1/116
22 https://doi.org/10.1098/rsta.2001.0955
23 https://doi.org/10.1103/physreva.45.r5339
24 https://doi.org/10.1103/physreve.48.r29
25 https://doi.org/10.1103/physreve.61.6546
26 https://doi.org/10.1103/physreve.94.043304
27 https://doi.org/10.1103/physrevlett.72.336
28 https://doi.org/10.1103/physrevlett.82.5044
29 https://doi.org/10.1103/physrevlett.93.064502
30 https://doi.org/10.1103/physrevlett.93.214501
31 https://doi.org/10.1142/s0129183197000746
32 https://doi.org/10.1146/annurev.fluid.30.1.539
33 https://doi.org/10.1146/annurev.fluid.36.050802.122015
34 https://doi.org/10.1209/0295-5075/17/6/001
35 https://doi.org/10.1209/epl/i1996-00472-2
36 schema:datePublished 2018-01
37 schema:datePublishedReg 2018-01-01
38 schema:description The lattice Boltzmann method (LBM) is coupled with the multiple-relaxation-time (MRT) collision model and the three-dimensional 19-discrete-velocity (D3Q19) model to resolve intermittent behaviors on small scales in isotropic turbulent flows. The high-order scaling exponents of the velocity structure functions, the probability distribution functions of Lagrangian accelerations, and the local energy dissipation rates are investigated. The self-similarity of the space-time velocity structure functions is explored using the extended self-similarity (ESS) method, which was originally developed for velocity spatial structure functions. The scaling exponents of spatial structure functions at up to ten orders are consistent with the experimental measurements and theoretical results, implying that the LBM can accurately resolve the intermittent behaviors. This validation provides a solid basis for using the LBM to study more complex processes that are sensitive to small scales in turbulent flows, such as the relative dispersion of pollutants and mesoscale structures of preferential concentration of heavy particles suspended in turbulent flows.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N5c87b2ed16c045f5b8a608be6fd458da
43 N7c88c1037d8641d585b748e65b8a6fe1
44 sg:journal.1327801
45 schema:name Lattice Boltzmann simulations of high-order statistics in isotropic turbulent flows
46 schema:pagination 21-30
47 schema:productId N4509427e01dd464a9e63df5a833e90ad
48 N85507f6bf31f4e2da5f834dc9685f730
49 Na0739c2a999c4d3ca65788a73edc30fa
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100112732
51 https://doi.org/10.1007/s10483-018-2254-9
52 schema:sdDatePublished 2019-04-11T01:01
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N80d74d730bc64a86a6fcb67d983d5393
55 schema:url http://link.springer.com/10.1007/s10483-018-2254-9
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N4509427e01dd464a9e63df5a833e90ad schema:name doi
60 schema:value 10.1007/s10483-018-2254-9
61 rdf:type schema:PropertyValue
62 N5c87b2ed16c045f5b8a608be6fd458da schema:volumeNumber 39
63 rdf:type schema:PublicationVolume
64 N6f77ab6c9ce34926a3b0176fb1547b5a rdf:first sg:person.010261712565.52
65 rdf:rest Ndde3988e1d0a4ca7923135998fa3b0d0
66 N78ecfbfe64674512b51408f2af92b50b rdf:first sg:person.015510251653.33
67 rdf:rest rdf:nil
68 N7c88c1037d8641d585b748e65b8a6fe1 schema:issueNumber 1
69 rdf:type schema:PublicationIssue
70 N80d74d730bc64a86a6fcb67d983d5393 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N85507f6bf31f4e2da5f834dc9685f730 schema:name readcube_id
73 schema:value ec651c23d186de148cd57b10abd471e9193afc85bdd3afcc771c9dff4ac2fb83
74 rdf:type schema:PropertyValue
75 Na0739c2a999c4d3ca65788a73edc30fa schema:name dimensions_id
76 schema:value pub.1100112732
77 rdf:type schema:PropertyValue
78 Nc56b8b963bf84d74aa08f9b14c4af22a rdf:first sg:person.014076614663.40
79 rdf:rest N6f77ab6c9ce34926a3b0176fb1547b5a
80 Ndde3988e1d0a4ca7923135998fa3b0d0 rdf:first sg:person.016502742762.28
81 rdf:rest N78ecfbfe64674512b51408f2af92b50b
82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
83 schema:name Engineering
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
86 schema:name Interdisciplinary Engineering
87 rdf:type schema:DefinedTerm
88 sg:journal.1327801 schema:issn 0253-4827
89 1000-0887
90 schema:name Applied Mathematics and Mechanics
91 rdf:type schema:Periodical
92 sg:person.010261712565.52 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
93 schema:familyName Wang
94 schema:givenName Shizhao
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010261712565.52
96 rdf:type schema:Person
97 sg:person.014076614663.40 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
98 schema:familyName Jin
99 schema:givenName Guodong
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014076614663.40
101 rdf:type schema:Person
102 sg:person.015510251653.33 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
103 schema:familyName He
104 schema:givenName Guowei
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015510251653.33
106 rdf:type schema:Person
107 sg:person.016502742762.28 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
108 schema:familyName Wang
109 schema:givenName Yun
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016502742762.28
111 rdf:type schema:Person
112 sg:pub.10.1007/bf01341754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006497341
113 https://doi.org/10.1007/bf01341754
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nature00983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017519688
116 https://doi.org/10.1038/nature00983
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0142-727x(96)00044-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005000017
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.camwa.2016.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015016391
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.compfluid.2009.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013376170
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.partic.2010.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018074415
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1017/cbo9780511840531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098697945
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1017/jfm.2015.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053831550
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1017/jfm.2016.448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054052376
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1017/s0022112000008661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054033795
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1017/s0022112002001842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053935725
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1017/s0022112004001326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053858341
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1017/s002211200500844x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054063604
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1017/s0022112084000513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053847990
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1017/s0022112087000892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053831915
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1017/s0022112091001957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023353374
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.870050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058122195
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1088/1367-2630/6/1/116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059138029
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1098/rsta.2001.0955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022491816
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physreva.45.r5339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060485768
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physreve.48.r29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060716087
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physreve.61.6546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060725271
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physreve.94.043304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060750724
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.72.336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809074
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.82.5044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034557877
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevlett.93.064502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019395399
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.93.214501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020526152
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1142/s0129183197000746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062906732
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1146/annurev.fluid.30.1.539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030446716
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1146/annurev.fluid.36.050802.122015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053175979
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1209/0295-5075/17/6/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064228747
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1209/epl/i1996-00472-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064234570
177 rdf:type schema:CreativeWork
178 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
179 schema:name School of Engineering Science, University of Chinese Academy of Sciences, 100049, Beijing, China
180 Stake Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...