Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-07

AUTHORS

M. M. Rashidi, A. Hosseini, I. Pop, S. Kumar, N. Freidoonimehr

ABSTRACT

The main purpose of this study is to survey numerically comparison of two-phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature field in the single phase and two-phase models are greater than those in the hydrodynamic field. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel. More... »

PAGES

831-848

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10483-014-1839-9

DOI

http://dx.doi.org/10.1007/s10483-014-1839-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016345739


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bu-Ali Sina University", 
          "id": "https://www.grid.ac/institutes/grid.411807.b", 
          "name": [
            "Department of Mechanical Engineering, Faculty of Engineering, Bu-Ali Sina University, 65178-38695, Hamedan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rashidi", 
        "givenName": "M. M.", 
        "id": "sg:person.016573246311.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bu-Ali Sina University", 
          "id": "https://www.grid.ac/institutes/grid.411807.b", 
          "name": [
            "Department of Mechanical Engineering, Faculty of Engineering, Bu-Ali Sina University, 65178-38695, Hamedan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hosseini", 
        "givenName": "A.", 
        "id": "sg:person.013541504267.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013541504267.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, Babe\u00e7Bolyai University, 400084, Cluj-Napoca, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pop", 
        "givenName": "I.", 
        "id": "sg:person.014635250773.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014635250773.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Maulana Azad National Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.419487.7", 
          "name": [
            "Department of Mathematics, National Institute of Technology, 831014, Jamshedpur, Jharkhand, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "S.", 
        "id": "sg:person.013160102015.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013160102015.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Islamic Azad University", 
          "id": "https://www.grid.ac/institutes/grid.464595.f", 
          "name": [
            "Young Researchers & Elite Club, Hamedan Branch, Islamic Azad University, 65181-15743, Hamedan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Freidoonimehr", 
        "givenName": "N.", 
        "id": "sg:person.01103125576.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103125576.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2009.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001387467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2009.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004446408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/09615531111162837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007962341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011123003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2010.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014630164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017279983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2008.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019537955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11012-013-9805-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019632020", 
          "https://doi.org/10.1007/s11012-013-9805-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2963/jjtp.7.227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020649950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021740541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(03)00156-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028138982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(03)00156-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028138982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2006.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029230349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2007.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032210644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024438603801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032513358", 
          "https://doi.org/10.1023/a:1024438603801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(01)00335-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032545505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2010.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034548305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-727x(99)00067-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035753922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08916159808946559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036362381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijthermalsci.2011.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036385966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2005.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038886691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2006.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040559280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040806658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(00)00054-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041290104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407780903244346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043891868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2010.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044242211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(98)00288-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045058662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/2.6486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045494919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(98)00264-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046284285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049028081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049028081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2011.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049576159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/713838173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050097136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112067001156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053781192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112067001156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053781192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112067001156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053781192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1341218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057696715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1532008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062071683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2063088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062076837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2063088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062076837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2818775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062084673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2823528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062085340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2825978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062085787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3248134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062112404"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-07", 
    "datePublishedReg": "2014-07-01", 
    "description": "The main purpose of this study is to survey numerically comparison of two-phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature field in the single phase and two-phase models are greater than those in the hydrodynamic field. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10483-014-1839-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327801", 
        "issn": [
          "0253-4827", 
          "1000-0887"
        ], 
        "name": "Applied Mathematics and Mechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel", 
    "pagination": "831-848", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4de1ef7b413c28a3d749aba94fc4dc3ef94845ae3676b124f0fb141687a86ba3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10483-014-1839-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016345739"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10483-014-1839-9", 
      "https://app.dimensions.ai/details/publication/pub.1016345739"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000531.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10483-014-1839-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10483-014-1839-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10483-014-1839-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10483-014-1839-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10483-014-1839-9'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10483-014-1839-9 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N614b78f5599043da81c6adb4b174996e
4 schema:citation sg:pub.10.1007/s11012-013-9805-9
5 sg:pub.10.1023/a:1024438603801
6 https://doi.org/10.1016/j.applthermaleng.2007.06.019
7 https://doi.org/10.1016/j.expthermflusci.2005.10.004
8 https://doi.org/10.1016/j.icheatmasstransfer.2006.01.005
9 https://doi.org/10.1016/j.icheatmasstransfer.2009.07.013
10 https://doi.org/10.1016/j.icheatmasstransfer.2009.08.003
11 https://doi.org/10.1016/j.icheatmasstransfer.2010.08.018
12 https://doi.org/10.1016/j.icheatmasstransfer.2010.12.009
13 https://doi.org/10.1016/j.icheatmasstransfer.2011.08.013
14 https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004
15 https://doi.org/10.1016/j.ijheatfluidflow.2006.04.006
16 https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001
17 https://doi.org/10.1016/j.ijheatfluidflow.2010.08.001
18 https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.039
19 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048
20 https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004
21 https://doi.org/10.1016/j.ijthermalsci.2008.10.004
22 https://doi.org/10.1016/j.ijthermalsci.2011.03.008
23 https://doi.org/10.1016/s0017-9310(00)00054-5
24 https://doi.org/10.1016/s0017-9310(01)00335-0
25 https://doi.org/10.1016/s0017-9310(03)00156-x
26 https://doi.org/10.1016/s0017-9310(98)00264-6
27 https://doi.org/10.1016/s0017-9310(98)00288-9
28 https://doi.org/10.1016/s0142-727x(99)00067-3
29 https://doi.org/10.1017/s0022112067001156
30 https://doi.org/10.1063/1.1341218
31 https://doi.org/10.1080/08916159808946559
32 https://doi.org/10.1080/10407780903244346
33 https://doi.org/10.1080/713838173
34 https://doi.org/10.1108/09615531111162837
35 https://doi.org/10.1115/1.1532008
36 https://doi.org/10.1115/1.2063088
37 https://doi.org/10.1115/1.2150834
38 https://doi.org/10.1115/1.2818775
39 https://doi.org/10.1115/1.2823528
40 https://doi.org/10.1115/1.2825978
41 https://doi.org/10.1115/1.3248134
42 https://doi.org/10.2514/2.6486
43 https://doi.org/10.2963/jjtp.7.227
44 schema:datePublished 2014-07
45 schema:datePublishedReg 2014-07-01
46 schema:description The main purpose of this study is to survey numerically comparison of two-phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature field in the single phase and two-phase models are greater than those in the hydrodynamic field. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N4cbf47a79d0d477b9a23962076450bce
51 N4cfec12439004756b697d2a4ab516265
52 sg:journal.1327801
53 schema:name Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel
54 schema:pagination 831-848
55 schema:productId N1fbfdf5a31f24822ac10ed043fe078bb
56 N576e8322eab54933826060049e69c9fe
57 N65a518e103ae478da4124d8abcf027b6
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016345739
59 https://doi.org/10.1007/s10483-014-1839-9
60 schema:sdDatePublished 2019-04-10T21:40
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N240f4d735afa4d15aff122e1ff954e51
63 schema:url http://link.springer.com/10.1007%2Fs10483-014-1839-9
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0b408c2b0a594c668e0aaaed726eb20c rdf:first sg:person.013541504267.29
68 rdf:rest N2e5c171facae4e08a20c3f0c422c8d68
69 N1fbfdf5a31f24822ac10ed043fe078bb schema:name dimensions_id
70 schema:value pub.1016345739
71 rdf:type schema:PropertyValue
72 N240f4d735afa4d15aff122e1ff954e51 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N2e5c171facae4e08a20c3f0c422c8d68 rdf:first sg:person.014635250773.03
75 rdf:rest N8b3fc65f00e8427aade5241bf674e8ee
76 N4cbf47a79d0d477b9a23962076450bce schema:volumeNumber 35
77 rdf:type schema:PublicationVolume
78 N4cfec12439004756b697d2a4ab516265 schema:issueNumber 7
79 rdf:type schema:PublicationIssue
80 N576e8322eab54933826060049e69c9fe schema:name doi
81 schema:value 10.1007/s10483-014-1839-9
82 rdf:type schema:PropertyValue
83 N614b78f5599043da81c6adb4b174996e rdf:first sg:person.016573246311.03
84 rdf:rest N0b408c2b0a594c668e0aaaed726eb20c
85 N65a518e103ae478da4124d8abcf027b6 schema:name readcube_id
86 schema:value 4de1ef7b413c28a3d749aba94fc4dc3ef94845ae3676b124f0fb141687a86ba3
87 rdf:type schema:PropertyValue
88 N80288a85cd074f2a99aead59f0bb39df rdf:first sg:person.01103125576.08
89 rdf:rest rdf:nil
90 N8b3fc65f00e8427aade5241bf674e8ee rdf:first sg:person.013160102015.26
91 rdf:rest N80288a85cd074f2a99aead59f0bb39df
92 Nc227f50296c54b4b8624cdabb7eb8abd schema:name Department of Mathematics, BabeçBolyai University, 400084, Cluj-Napoca, Romania
93 rdf:type schema:Organization
94 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
95 schema:name Engineering
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
98 schema:name Interdisciplinary Engineering
99 rdf:type schema:DefinedTerm
100 sg:journal.1327801 schema:issn 0253-4827
101 1000-0887
102 schema:name Applied Mathematics and Mechanics
103 rdf:type schema:Periodical
104 sg:person.01103125576.08 schema:affiliation https://www.grid.ac/institutes/grid.464595.f
105 schema:familyName Freidoonimehr
106 schema:givenName N.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103125576.08
108 rdf:type schema:Person
109 sg:person.013160102015.26 schema:affiliation https://www.grid.ac/institutes/grid.419487.7
110 schema:familyName Kumar
111 schema:givenName S.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013160102015.26
113 rdf:type schema:Person
114 sg:person.013541504267.29 schema:affiliation https://www.grid.ac/institutes/grid.411807.b
115 schema:familyName Hosseini
116 schema:givenName A.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013541504267.29
118 rdf:type schema:Person
119 sg:person.014635250773.03 schema:affiliation Nc227f50296c54b4b8624cdabb7eb8abd
120 schema:familyName Pop
121 schema:givenName I.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014635250773.03
123 rdf:type schema:Person
124 sg:person.016573246311.03 schema:affiliation https://www.grid.ac/institutes/grid.411807.b
125 schema:familyName Rashidi
126 schema:givenName M. M.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016573246311.03
128 rdf:type schema:Person
129 sg:pub.10.1007/s11012-013-9805-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019632020
130 https://doi.org/10.1007/s11012-013-9805-9
131 rdf:type schema:CreativeWork
132 sg:pub.10.1023/a:1024438603801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032513358
133 https://doi.org/10.1023/a:1024438603801
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.applthermaleng.2007.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032210644
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.expthermflusci.2005.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038886691
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.icheatmasstransfer.2006.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029230349
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.icheatmasstransfer.2009.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001387467
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.icheatmasstransfer.2009.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004446408
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.icheatmasstransfer.2010.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034548305
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.icheatmasstransfer.2010.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044242211
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.icheatmasstransfer.2011.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049576159
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049028081
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ijheatfluidflow.2006.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040559280
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040806658
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.ijheatfluidflow.2010.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014630164
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021740541
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011123003
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017279983
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ijthermalsci.2008.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019537955
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ijthermalsci.2011.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036385966
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0017-9310(00)00054-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041290104
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0017-9310(01)00335-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032545505
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0017-9310(03)00156-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028138982
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s0017-9310(98)00264-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046284285
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0017-9310(98)00288-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045058662
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0142-727x(99)00067-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035753922
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1017/s0022112067001156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053781192
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1063/1.1341218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057696715
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1080/08916159808946559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036362381
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1080/10407780903244346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043891868
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1080/713838173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050097136
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1108/09615531111162837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007962341
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1115/1.1532008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062071683
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1115/1.2063088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062076837
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1115/1.2150834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062077311
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1115/1.2818775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062084673
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1115/1.2823528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062085340
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1115/1.2825978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062085787
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1115/1.3248134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062112404
206 rdf:type schema:CreativeWork
207 https://doi.org/10.2514/2.6486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045494919
208 rdf:type schema:CreativeWork
209 https://doi.org/10.2963/jjtp.7.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020649950
210 rdf:type schema:CreativeWork
211 https://www.grid.ac/institutes/grid.411807.b schema:alternateName Bu-Ali Sina University
212 schema:name Department of Mechanical Engineering, Faculty of Engineering, Bu-Ali Sina University, 65178-38695, Hamedan, Iran
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.419487.7 schema:alternateName Maulana Azad National Institute of Technology
215 schema:name Department of Mathematics, National Institute of Technology, 831014, Jamshedpur, Jharkhand, India
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.464595.f schema:alternateName Islamic Azad University
218 schema:name Young Researchers & Elite Club, Hamedan Branch, Islamic Azad University, 65181-15743, Hamedan, Iran
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...