Exploring the sheep rumen microbiome for carbohydrate-active enzymes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-07

AUTHORS

Lucas Dantas Lopes, André Oliveira de Souza Lima, Rodrigo Gouvêa Taketani, Phillip Darias, Lília Raquel Fé da Silva, Emiliana Manesco Romagnoli, Helder Louvandini, Adibe Luiz Abdalla, Rodrigo Mendes

ABSTRACT

The rumen is a complex ecosystem enriched for microorganisms able to degrade biomass during the animal's digestion process. The recovery of new enzymes from naturally evolved biomass-degrading microbial communities is a promising strategy to overcome the inefficient enzymatic plant destruction in industrial production of biofuels. In this context, this study aimed to describe the bacterial composition and functions in the sheep rumen microbiome, focusing on carbohydrate-active enzymes (CAE). Here, we used phylogenetic profiling analysis (inventory of 16S rRNA genes) combined with metagenomics to access the rumen microbiome of four sheep and explore its potential to identify fibrolytic enzymes. The bacterial community was dominated by Bacteroidetes and Firmicutes, followed by Proteobacteria. As observed for other ruminants, Prevotella was the dominant genus in the microbiome, comprising more than 30 % of the total bacterial community. Multivariate analysis of the phylogenetic profiling data and chemical parameters showed a positive correlation between the abundance of Prevotellaceae (Bacteroidetes phylum) and organic matter degradability. A negative correlation was observed between Succinivibrionaceae (Proteobacteria phylum) and methane production. An average of 2 % of the shotgun metagenomic reads was assigned to putative CAE when considering nine protein databases. In addition, assembled contigs allowed recognition of 67 putative partial CAE (NCBI-Refseq) representing 12 glycosyl hydrolase families (Pfam database). Overall, we identified a total of 28 lignocellulases, 22 amylases and 9 other putative CAE, showing the sheep rumen microbiome as a promising source of new fibrolytic enzymes. More... »

PAGES

15-30

References to SciGraph publications

  • 2013-09. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences in NATURE BIOTECHNOLOGY
  • 2012-12. Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene in BMC RESEARCH NOTES
  • 2010-05. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 2010-11. Comparative Genome Analysis of Prevotella ruminicola and Prevotella bryantii: Insights into Their Environmental Niche in MICROBIAL ECOLOGY
  • 2009-11-06. In Vitro Screening of Feed Resources for Efficiency of Microbial Protein Synthesis in IN VITRO SCREENING OF PLANT RESOURCES FOR EXTRA-NUTRITIONAL ATTRIBUTES IN RUMINANTS: NUCLEAR AND RELATED METHODOLOGIES
  • 2013-06. Exploring the bovine rumen bacterial community from birth to adulthood in THE ISME JOURNAL
  • 2010-10. β-Glucosidases in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2008-12. The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes in BMC BIOINFORMATICS
  • 2011-02. Changes to the rumen bacterial population of sheep with the addition of 2,4,6-trinitrotoluene to their diet in ANTONIE VAN LEEUWENHOEK
  • 2010-04. Rumen Bacterial Diversity Dynamics Associated with Changing from Bermudagrass Hay to Grazed Winter Wheat Diets in MICROBIAL ECOLOGY
  • 2012-09. Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2007-05. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2010-08. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10482-015-0459-6

    DOI

    http://dx.doi.org/10.1007/s10482-015-0459-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035757128

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25900454


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carbohydrate Metabolism", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Ribosomal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Glycoside Hydrolases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Ribosomal, 16S", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rumen", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sheep", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ministry of Agriculture, Livestock, and Food Supply", 
              "id": "https://www.grid.ac/institutes/grid.420953.9", 
              "name": [
                "Laboratory of Environmental Microbiology, Embrapa Environment, Rod. SP340 km 127.5, Zip Code 13820-000, Jaguar\u00eduna, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lopes", 
            "givenName": "Lucas Dantas", 
            "id": "sg:person.011214557745.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011214557745.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Center of Technological Sciences of Earth and Sea, University of Vale do Itaja\u00ed, R. Uruguai 458, Zip Code 88302-202, Itaja\u00ed, SC, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Souza Lima", 
            "givenName": "Andr\u00e9 Oliveira", 
            "id": "sg:person.012103264731.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103264731.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ministry of Agriculture, Livestock, and Food Supply", 
              "id": "https://www.grid.ac/institutes/grid.420953.9", 
              "name": [
                "Laboratory of Environmental Microbiology, Embrapa Environment, Rod. SP340 km 127.5, Zip Code 13820-000, Jaguar\u00eduna, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taketani", 
            "givenName": "Rodrigo Gouv\u00eaa", 
            "id": "sg:person.0774335237.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774335237.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Center of Technological Sciences of Earth and Sea, University of Vale do Itaja\u00ed, R. Uruguai 458, Zip Code 88302-202, Itaja\u00ed, SC, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Darias", 
            "givenName": "Phillip", 
            "id": "sg:person.01064240730.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064240730.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universidade Federal do Piau\u00ed", 
              "id": "https://www.grid.ac/institutes/grid.412380.c", 
              "name": [
                "Federal University of Piau\u00ed, Socopo Campus, Bairro Ininga, Zip Code 64049-550, Teresina, PI, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "da Silva", 
            "givenName": "L\u00edlia Raquel F\u00e9", 
            "id": "sg:person.01362262463.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362262463.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ministry of Agriculture, Livestock, and Food Supply", 
              "id": "https://www.grid.ac/institutes/grid.420953.9", 
              "name": [
                "Laboratory of Environmental Microbiology, Embrapa Environment, Rod. SP340 km 127.5, Zip Code 13820-000, Jaguar\u00eduna, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Romagnoli", 
            "givenName": "Emiliana Manesco", 
            "id": "sg:person.0636656363.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636656363.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sao Paulo", 
              "id": "https://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Center for Nuclear Energy in Agriculture, University of S\u00e3o Paulo, Av. Centen\u00e1rio 303, Zip Code 13400-970, Piracicaba, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Louvandini", 
            "givenName": "Helder", 
            "id": "sg:person.01342477053.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342477053.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sao Paulo", 
              "id": "https://www.grid.ac/institutes/grid.11899.38", 
              "name": [
                "Center for Nuclear Energy in Agriculture, University of S\u00e3o Paulo, Av. Centen\u00e1rio 303, Zip Code 13400-970, Piracicaba, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abdalla", 
            "givenName": "Adibe Luiz", 
            "id": "sg:person.016367714300.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016367714300.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ministry of Agriculture, Livestock, and Food Supply", 
              "id": "https://www.grid.ac/institutes/grid.420953.9", 
              "name": [
                "Laboratory of Environmental Microbiology, Embrapa Environment, Rod. SP340 km 127.5, Zip Code 13820-000, Jaguar\u00eduna, SP, Brazil"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mendes", 
            "givenName": "Rodrigo", 
            "id": "sg:person.0621740456.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621740456.94"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1756-0500-5-566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003666935", 
              "https://doi.org/10.1186/1756-0500-5-566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006083026", 
              "https://doi.org/10.1186/1471-2105-9-386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0605127103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008547462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m110.141788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011287573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tvjl.2010.02.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011370243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0065333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014107741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.micres.2008.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017335427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.anifeedsci.2005.05.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019287747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-010-9692-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019383550", 
              "https://doi.org/10.1007/s00248-010-9692-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-010-9692-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019383550", 
              "https://doi.org/10.1007/s00248-010-9692-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.00104-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019772093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0038571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019809938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/catal2020244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020156542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1462-2920.2011.02543.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027993628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-006-0802-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028058265", 
              "https://doi.org/10.1007/s00253-006-0802-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-006-0802-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028058265", 
              "https://doi.org/10.1007/s00253-006-0802-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2323/jgam.46.119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028927757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2323/jgam.46.119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028927757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10482-010-9481-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030112898", 
              "https://doi.org/10.1007/s10482-010-9481-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.06088-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030113889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0033306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030697316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2010/945785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032815720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbrc.2013.10.120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033525274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034019934", 
              "https://doi.org/10.1038/nbt.2676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0040430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034429697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2014-8003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034947486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2014-8003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034947486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2014-8003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034947486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2012-5554", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036961352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fmicb.2014.00307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037082966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ics.2006.03.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037265891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1373/clinchem.2008.107565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037869075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-009-9609-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041516289", 
              "https://doi.org/10.1007/s00248-009-9609-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00248-009-9609-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041516289", 
              "https://doi.org/10.1007/s00248-009-9609-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-010-0399-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042617834", 
              "https://doi.org/10.1007/s00018-010-0399-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-010-0399-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042617834", 
              "https://doi.org/10.1007/s00018-010-0399-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.05621-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042647445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-012-4262-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043058761", 
              "https://doi.org/10.1007/s00253-012-4262-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-012-4262-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043058761", 
              "https://doi.org/10.1007/s00253-012-4262-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044636881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-90-481-3297-3_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044880296", 
              "https://doi.org/10.1007/978-90-481-3297-3_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-90-481-3297-3_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044880296", 
              "https://doi.org/10.1007/978-90-481-3297-3_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1196/annals.1419.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045693799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-8-r86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046347776", 
              "https://doi.org/10.1186/gb-2010-11-8-r86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0806191105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047534702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas.2010-2900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047722823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2013.2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047947766", 
              "https://doi.org/10.1038/ismej.2013.2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4155/bfs.13.36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048871085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biortech.2012.11.073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049202659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1574-6941.2007.00375.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053205737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1058830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062444454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1200387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062464332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1205760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062464706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/microbe.4.323.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062729434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3920/bm2008.1002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071703590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4303/mg/235571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072445305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4303/mg/235571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072445305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.s0022-0302(05)73133-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077048588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.s0022-0302(91)78551-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077220019"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-07", 
        "datePublishedReg": "2015-07-01", 
        "description": "The rumen is a complex ecosystem enriched for microorganisms able to degrade biomass during the animal's digestion process. The recovery of new enzymes from naturally evolved biomass-degrading microbial communities is a promising strategy to overcome the inefficient enzymatic plant destruction in industrial production of biofuels. In this context, this study aimed to describe the bacterial composition and functions in the sheep rumen microbiome, focusing on carbohydrate-active enzymes (CAE). Here, we used phylogenetic profiling analysis (inventory of 16S rRNA genes) combined with metagenomics to access the rumen microbiome of four sheep and explore its potential to identify fibrolytic enzymes. The bacterial community was dominated by Bacteroidetes and Firmicutes, followed by Proteobacteria. As observed for other ruminants, Prevotella was the dominant genus in the microbiome, comprising more than 30 % of the total bacterial community. Multivariate analysis of the phylogenetic profiling data and chemical parameters showed a positive correlation between the abundance of Prevotellaceae (Bacteroidetes phylum) and organic matter degradability. A negative correlation was observed between Succinivibrionaceae (Proteobacteria phylum) and methane production. An average of 2 % of the shotgun metagenomic reads was assigned to putative CAE when considering nine protein databases. In addition, assembled contigs allowed recognition of 67 putative partial CAE (NCBI-Refseq) representing 12 glycosyl hydrolase families (Pfam database). Overall, we identified a total of 28 lignocellulases, 22 amylases and 9 other putative CAE, showing the sheep rumen microbiome as a promising source of new fibrolytic enzymes.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10482-015-0459-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4479011", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4476092", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1017348", 
            "issn": [
              "0003-6072", 
              "1572-9699"
            ], 
            "name": "Antonie van Leeuwenhoek", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "108"
          }
        ], 
        "name": "Exploring the sheep rumen microbiome for carbohydrate-active enzymes", 
        "pagination": "15-30", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "aa5576f313c4aa72a4734bca4ded3b208fbb4c4af444e4d327fc41fe7675d058"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25900454"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0372625"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10482-015-0459-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035757128"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10482-015-0459-6", 
          "https://app.dimensions.ai/details/publication/pub.1035757128"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000514.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10482-015-0459-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10482-015-0459-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10482-015-0459-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10482-015-0459-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10482-015-0459-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    346 TRIPLES      21 PREDICATES      90 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10482-015-0459-6 schema:about N08b9a2d63d2d4d0a9600c4e2c2671d9e
    2 N1cddb2f8e5d24039890c362c98ac8ad6
    3 N20f2f64e33eb41c08ab93871e3b7752e
    4 N4b14a612f91c4892a187a69851d1be2b
    5 N51954172e76a43b995260bd6f9bc9665
    6 N9001c10b6fdf4d1b82373b0463ed8c46
    7 Nae198634f66d4c2186e24edc235508c1
    8 Nb1949aaa15764321969f68e922d2c43c
    9 Nd7b5d755a9e44d559a45d40cb13f4977
    10 Ne17c6cfacecb45d2b39cb5f0bf2b859c
    11 Nf0754b3ec8544fd98a8430ec6afc9bcf
    12 anzsrc-for:06
    13 anzsrc-for:0605
    14 schema:author N53d2134c373942b9bbeb2350577c9df2
    15 schema:citation sg:pub.10.1007/978-90-481-3297-3_7
    16 sg:pub.10.1007/s00018-010-0399-2
    17 sg:pub.10.1007/s00248-009-9609-6
    18 sg:pub.10.1007/s00248-010-9692-8
    19 sg:pub.10.1007/s00253-006-0802-y
    20 sg:pub.10.1007/s00253-012-4262-2
    21 sg:pub.10.1007/s10482-010-9481-x
    22 sg:pub.10.1038/ismej.2013.2
    23 sg:pub.10.1038/nbt.2676
    24 sg:pub.10.1038/nmeth.f.303
    25 sg:pub.10.1186/1471-2105-9-386
    26 sg:pub.10.1186/1756-0500-5-566
    27 sg:pub.10.1186/gb-2010-11-8-r86
    28 https://doi.org/10.1016/j.anifeedsci.2005.05.003
    29 https://doi.org/10.1016/j.bbrc.2013.10.120
    30 https://doi.org/10.1016/j.biortech.2012.11.073
    31 https://doi.org/10.1016/j.ics.2006.03.017
    32 https://doi.org/10.1016/j.micres.2008.12.002
    33 https://doi.org/10.1016/j.tvjl.2010.02.019
    34 https://doi.org/10.1073/pnas.0605127103
    35 https://doi.org/10.1073/pnas.0806191105
    36 https://doi.org/10.1074/jbc.m110.141788
    37 https://doi.org/10.1093/bioinformatics/btq281
    38 https://doi.org/10.1111/j.1462-2920.2011.02543.x
    39 https://doi.org/10.1111/j.1574-6941.2007.00375.x
    40 https://doi.org/10.1126/science.1058830
    41 https://doi.org/10.1126/science.1200387
    42 https://doi.org/10.1126/science.1205760
    43 https://doi.org/10.1128/aem.00104-12
    44 https://doi.org/10.1128/aem.06088-11
    45 https://doi.org/10.1128/jb.05621-11
    46 https://doi.org/10.1128/microbe.4.323.1
    47 https://doi.org/10.1155/2010/945785
    48 https://doi.org/10.1196/annals.1419.022
    49 https://doi.org/10.1371/journal.pone.0033306
    50 https://doi.org/10.1371/journal.pone.0038571
    51 https://doi.org/10.1371/journal.pone.0040430
    52 https://doi.org/10.1371/journal.pone.0065333
    53 https://doi.org/10.1373/clinchem.2008.107565
    54 https://doi.org/10.2323/jgam.46.119
    55 https://doi.org/10.2527/jas.2010-2900
    56 https://doi.org/10.3168/jds.2012-5554
    57 https://doi.org/10.3168/jds.2014-8003
    58 https://doi.org/10.3168/jds.s0022-0302(05)73133-7
    59 https://doi.org/10.3168/jds.s0022-0302(91)78551-2
    60 https://doi.org/10.3389/fmicb.2014.00307
    61 https://doi.org/10.3390/catal2020244
    62 https://doi.org/10.3920/bm2008.1002
    63 https://doi.org/10.4155/bfs.13.36
    64 https://doi.org/10.4303/mg/235571
    65 schema:datePublished 2015-07
    66 schema:datePublishedReg 2015-07-01
    67 schema:description The rumen is a complex ecosystem enriched for microorganisms able to degrade biomass during the animal's digestion process. The recovery of new enzymes from naturally evolved biomass-degrading microbial communities is a promising strategy to overcome the inefficient enzymatic plant destruction in industrial production of biofuels. In this context, this study aimed to describe the bacterial composition and functions in the sheep rumen microbiome, focusing on carbohydrate-active enzymes (CAE). Here, we used phylogenetic profiling analysis (inventory of 16S rRNA genes) combined with metagenomics to access the rumen microbiome of four sheep and explore its potential to identify fibrolytic enzymes. The bacterial community was dominated by Bacteroidetes and Firmicutes, followed by Proteobacteria. As observed for other ruminants, Prevotella was the dominant genus in the microbiome, comprising more than 30 % of the total bacterial community. Multivariate analysis of the phylogenetic profiling data and chemical parameters showed a positive correlation between the abundance of Prevotellaceae (Bacteroidetes phylum) and organic matter degradability. A negative correlation was observed between Succinivibrionaceae (Proteobacteria phylum) and methane production. An average of 2 % of the shotgun metagenomic reads was assigned to putative CAE when considering nine protein databases. In addition, assembled contigs allowed recognition of 67 putative partial CAE (NCBI-Refseq) representing 12 glycosyl hydrolase families (Pfam database). Overall, we identified a total of 28 lignocellulases, 22 amylases and 9 other putative CAE, showing the sheep rumen microbiome as a promising source of new fibrolytic enzymes.
    68 schema:genre research_article
    69 schema:inLanguage en
    70 schema:isAccessibleForFree false
    71 schema:isPartOf Ne24f6cf53f804bb59a3e54ffe3869b34
    72 Nee08d4489fb8481283cfb50c2960aaa2
    73 sg:journal.1017348
    74 schema:name Exploring the sheep rumen microbiome for carbohydrate-active enzymes
    75 schema:pagination 15-30
    76 schema:productId N077c7b1012224c7c8570ff392653ca2b
    77 N26c8acd4798d42708e3ed6c589deb4f4
    78 N39ee7e4e24524dc1a78cbbd6c476a31b
    79 N84bf29c397884fb29d9b8fa93c1909e4
    80 Nb6fcadc4718f466f8be923e4d664992c
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035757128
    82 https://doi.org/10.1007/s10482-015-0459-6
    83 schema:sdDatePublished 2019-04-10T17:32
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher Ncf2e11f3346844d5b6404c9af1786782
    86 schema:url http://link.springer.com/10.1007%2Fs10482-015-0459-6
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N077c7b1012224c7c8570ff392653ca2b schema:name dimensions_id
    91 schema:value pub.1035757128
    92 rdf:type schema:PropertyValue
    93 N08b9a2d63d2d4d0a9600c4e2c2671d9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name RNA, Ribosomal, 16S
    95 rdf:type schema:DefinedTerm
    96 N0b1936ed6f844a7584218bc71eeea041 schema:name Center of Technological Sciences of Earth and Sea, University of Vale do Itajaí, R. Uruguai 458, Zip Code 88302-202, Itajaí, SC, Brazil
    97 rdf:type schema:Organization
    98 N0cb413772cd34478942559e79cf53fd3 rdf:first sg:person.01064240730.46
    99 rdf:rest Neabd8867e6424c99b4aa2cf2cd694715
    100 N1a2858a1983b4cffa632ae87d97bcdb0 rdf:first sg:person.01342477053.54
    101 rdf:rest Nf3dc9cd945664542bb8d606c286d0654
    102 N1cddb2f8e5d24039890c362c98ac8ad6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name DNA, Bacterial
    104 rdf:type schema:DefinedTerm
    105 N20f2f64e33eb41c08ab93871e3b7752e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Sequence Analysis, DNA
    107 rdf:type schema:DefinedTerm
    108 N26c8acd4798d42708e3ed6c589deb4f4 schema:name readcube_id
    109 schema:value aa5576f313c4aa72a4734bca4ded3b208fbb4c4af444e4d327fc41fe7675d058
    110 rdf:type schema:PropertyValue
    111 N330f2857038d41d69397df8eb0bde84c schema:name Center of Technological Sciences of Earth and Sea, University of Vale do Itajaí, R. Uruguai 458, Zip Code 88302-202, Itajaí, SC, Brazil
    112 rdf:type schema:Organization
    113 N39ee7e4e24524dc1a78cbbd6c476a31b schema:name nlm_unique_id
    114 schema:value 0372625
    115 rdf:type schema:PropertyValue
    116 N4b14a612f91c4892a187a69851d1be2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Carbohydrate Metabolism
    118 rdf:type schema:DefinedTerm
    119 N51954172e76a43b995260bd6f9bc9665 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name DNA, Ribosomal
    121 rdf:type schema:DefinedTerm
    122 N53d2134c373942b9bbeb2350577c9df2 rdf:first sg:person.011214557745.85
    123 rdf:rest Nbd03cb8ea0f94594936972b734300780
    124 N72e0c4c5eaa1417db2b75cfb28ab462d rdf:first sg:person.0636656363.48
    125 rdf:rest N1a2858a1983b4cffa632ae87d97bcdb0
    126 N7a486de667864930967797099b159b9e rdf:first sg:person.0621740456.94
    127 rdf:rest rdf:nil
    128 N84bf29c397884fb29d9b8fa93c1909e4 schema:name pubmed_id
    129 schema:value 25900454
    130 rdf:type schema:PropertyValue
    131 N9001c10b6fdf4d1b82373b0463ed8c46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Glycoside Hydrolases
    133 rdf:type schema:DefinedTerm
    134 Nae198634f66d4c2186e24edc235508c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Microbiota
    136 rdf:type schema:DefinedTerm
    137 Nb1949aaa15764321969f68e922d2c43c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Bacteria
    139 rdf:type schema:DefinedTerm
    140 Nb6fcadc4718f466f8be923e4d664992c schema:name doi
    141 schema:value 10.1007/s10482-015-0459-6
    142 rdf:type schema:PropertyValue
    143 Nbd03cb8ea0f94594936972b734300780 rdf:first sg:person.012103264731.94
    144 rdf:rest Nc04db8d3435d4d4388f0ee0bf1042f99
    145 Nc04db8d3435d4d4388f0ee0bf1042f99 rdf:first sg:person.0774335237.65
    146 rdf:rest N0cb413772cd34478942559e79cf53fd3
    147 Ncf2e11f3346844d5b6404c9af1786782 schema:name Springer Nature - SN SciGraph project
    148 rdf:type schema:Organization
    149 Nd7b5d755a9e44d559a45d40cb13f4977 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Sheep
    151 rdf:type schema:DefinedTerm
    152 Ne17c6cfacecb45d2b39cb5f0bf2b859c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Animals
    154 rdf:type schema:DefinedTerm
    155 Ne24f6cf53f804bb59a3e54ffe3869b34 schema:volumeNumber 108
    156 rdf:type schema:PublicationVolume
    157 Neabd8867e6424c99b4aa2cf2cd694715 rdf:first sg:person.01362262463.29
    158 rdf:rest N72e0c4c5eaa1417db2b75cfb28ab462d
    159 Nee08d4489fb8481283cfb50c2960aaa2 schema:issueNumber 1
    160 rdf:type schema:PublicationIssue
    161 Nf0754b3ec8544fd98a8430ec6afc9bcf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Rumen
    163 rdf:type schema:DefinedTerm
    164 Nf3dc9cd945664542bb8d606c286d0654 rdf:first sg:person.016367714300.04
    165 rdf:rest N7a486de667864930967797099b159b9e
    166 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Biological Sciences
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Microbiology
    171 rdf:type schema:DefinedTerm
    172 sg:grant.4476092 http://pending.schema.org/fundedItem sg:pub.10.1007/s10482-015-0459-6
    173 rdf:type schema:MonetaryGrant
    174 sg:grant.4479011 http://pending.schema.org/fundedItem sg:pub.10.1007/s10482-015-0459-6
    175 rdf:type schema:MonetaryGrant
    176 sg:journal.1017348 schema:issn 0003-6072
    177 1572-9699
    178 schema:name Antonie van Leeuwenhoek
    179 rdf:type schema:Periodical
    180 sg:person.01064240730.46 schema:affiliation N330f2857038d41d69397df8eb0bde84c
    181 schema:familyName Darias
    182 schema:givenName Phillip
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064240730.46
    184 rdf:type schema:Person
    185 sg:person.011214557745.85 schema:affiliation https://www.grid.ac/institutes/grid.420953.9
    186 schema:familyName Lopes
    187 schema:givenName Lucas Dantas
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011214557745.85
    189 rdf:type schema:Person
    190 sg:person.012103264731.94 schema:affiliation N0b1936ed6f844a7584218bc71eeea041
    191 schema:familyName de Souza Lima
    192 schema:givenName André Oliveira
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103264731.94
    194 rdf:type schema:Person
    195 sg:person.01342477053.54 schema:affiliation https://www.grid.ac/institutes/grid.11899.38
    196 schema:familyName Louvandini
    197 schema:givenName Helder
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342477053.54
    199 rdf:type schema:Person
    200 sg:person.01362262463.29 schema:affiliation https://www.grid.ac/institutes/grid.412380.c
    201 schema:familyName da Silva
    202 schema:givenName Lília Raquel Fé
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362262463.29
    204 rdf:type schema:Person
    205 sg:person.016367714300.04 schema:affiliation https://www.grid.ac/institutes/grid.11899.38
    206 schema:familyName Abdalla
    207 schema:givenName Adibe Luiz
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016367714300.04
    209 rdf:type schema:Person
    210 sg:person.0621740456.94 schema:affiliation https://www.grid.ac/institutes/grid.420953.9
    211 schema:familyName Mendes
    212 schema:givenName Rodrigo
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621740456.94
    214 rdf:type schema:Person
    215 sg:person.0636656363.48 schema:affiliation https://www.grid.ac/institutes/grid.420953.9
    216 schema:familyName Romagnoli
    217 schema:givenName Emiliana Manesco
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636656363.48
    219 rdf:type schema:Person
    220 sg:person.0774335237.65 schema:affiliation https://www.grid.ac/institutes/grid.420953.9
    221 schema:familyName Taketani
    222 schema:givenName Rodrigo Gouvêa
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774335237.65
    224 rdf:type schema:Person
    225 sg:pub.10.1007/978-90-481-3297-3_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044880296
    226 https://doi.org/10.1007/978-90-481-3297-3_7
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s00018-010-0399-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042617834
    229 https://doi.org/10.1007/s00018-010-0399-2
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/s00248-009-9609-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041516289
    232 https://doi.org/10.1007/s00248-009-9609-6
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/s00248-010-9692-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019383550
    235 https://doi.org/10.1007/s00248-010-9692-8
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/s00253-006-0802-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028058265
    238 https://doi.org/10.1007/s00253-006-0802-y
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/s00253-012-4262-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043058761
    241 https://doi.org/10.1007/s00253-012-4262-2
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/s10482-010-9481-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030112898
    244 https://doi.org/10.1007/s10482-010-9481-x
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/ismej.2013.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047947766
    247 https://doi.org/10.1038/ismej.2013.2
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/nbt.2676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034019934
    250 https://doi.org/10.1038/nbt.2676
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    253 https://doi.org/10.1038/nmeth.f.303
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1186/1471-2105-9-386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006083026
    256 https://doi.org/10.1186/1471-2105-9-386
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1186/1756-0500-5-566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003666935
    259 https://doi.org/10.1186/1756-0500-5-566
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1186/gb-2010-11-8-r86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046347776
    262 https://doi.org/10.1186/gb-2010-11-8-r86
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1016/j.anifeedsci.2005.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019287747
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1016/j.bbrc.2013.10.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033525274
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1016/j.biortech.2012.11.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049202659
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1016/j.ics.2006.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037265891
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1016/j.micres.2008.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017335427
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1016/j.tvjl.2010.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011370243
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1073/pnas.0605127103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008547462
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1073/pnas.0806191105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047534702
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1074/jbc.m110.141788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011287573
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1093/bioinformatics/btq281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044636881
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1111/j.1462-2920.2011.02543.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027993628
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1111/j.1574-6941.2007.00375.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053205737
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1126/science.1058830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062444454
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1126/science.1200387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464332
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1126/science.1205760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464706
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.1128/aem.00104-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019772093
    295 rdf:type schema:CreativeWork
    296 https://doi.org/10.1128/aem.06088-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030113889
    297 rdf:type schema:CreativeWork
    298 https://doi.org/10.1128/jb.05621-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042647445
    299 rdf:type schema:CreativeWork
    300 https://doi.org/10.1128/microbe.4.323.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062729434
    301 rdf:type schema:CreativeWork
    302 https://doi.org/10.1155/2010/945785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032815720
    303 rdf:type schema:CreativeWork
    304 https://doi.org/10.1196/annals.1419.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045693799
    305 rdf:type schema:CreativeWork
    306 https://doi.org/10.1371/journal.pone.0033306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030697316
    307 rdf:type schema:CreativeWork
    308 https://doi.org/10.1371/journal.pone.0038571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019809938
    309 rdf:type schema:CreativeWork
    310 https://doi.org/10.1371/journal.pone.0040430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034429697
    311 rdf:type schema:CreativeWork
    312 https://doi.org/10.1371/journal.pone.0065333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014107741
    313 rdf:type schema:CreativeWork
    314 https://doi.org/10.1373/clinchem.2008.107565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037869075
    315 rdf:type schema:CreativeWork
    316 https://doi.org/10.2323/jgam.46.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028927757
    317 rdf:type schema:CreativeWork
    318 https://doi.org/10.2527/jas.2010-2900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047722823
    319 rdf:type schema:CreativeWork
    320 https://doi.org/10.3168/jds.2012-5554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036961352
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.3168/jds.2014-8003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034947486
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.3168/jds.s0022-0302(05)73133-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077048588
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.3168/jds.s0022-0302(91)78551-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077220019
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.3389/fmicb.2014.00307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037082966
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.3390/catal2020244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020156542
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.3920/bm2008.1002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071703590
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.4155/bfs.13.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048871085
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.4303/mg/235571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072445305
    337 rdf:type schema:CreativeWork
    338 https://www.grid.ac/institutes/grid.11899.38 schema:alternateName University of Sao Paulo
    339 schema:name Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, Zip Code 13400-970, Piracicaba, SP, Brazil
    340 rdf:type schema:Organization
    341 https://www.grid.ac/institutes/grid.412380.c schema:alternateName Universidade Federal do Piauí
    342 schema:name Federal University of Piauí, Socopo Campus, Bairro Ininga, Zip Code 64049-550, Teresina, PI, Brazil
    343 rdf:type schema:Organization
    344 https://www.grid.ac/institutes/grid.420953.9 schema:alternateName Ministry of Agriculture, Livestock, and Food Supply
    345 schema:name Laboratory of Environmental Microbiology, Embrapa Environment, Rod. SP340 km 127.5, Zip Code 13820-000, Jaguaríuna, SP, Brazil
    346 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...