On the use of conditional expectation in portfolio selection problems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Sergio Ortobelli, Noureddine Kouaissah, Tomáš Tichý

ABSTRACT

In this paper, we examine the use of conditional expectation, either to reduce the dimensionality of large-scale portfolio problems or to propose alternative reward–risk performance measures. In particular, we focus on two financial problems. In the first part, we discuss and examine correlation measures (based on a conditional expectation) used to approximate the returns in large-scale portfolio problems. Then, we compare the impact of alternative return approximation methodologies on the ex-post wealth of a classic portfolio strategy. In this context, we show that correlation measures that use the conditional expectation perform better than the classic measures do. Moreover, the correlation measure typically used for returns in the domain of attraction of a stable law works better than the classic Pearson correlation does. In the second part, we propose new performance measures based on a conditional expectation that take into account the heavy tails of the return distributions. Then, we examine portfolio strategies based on optimizing the proposed performance measures. In particular, we compare the ex-post wealth obtained from applying the portfolio strategies, which use alternative performance measures based on a conditional expectation. In doing so, we propose an alternative use of conditional expectation in various portfolio problems. More... »

PAGES

501-530

References to SciGraph publications

  • 2015-12. On the impact of semidefinite positive correlation measures in portfolio theory in ANNALS OF OPERATIONS RESEARCH
  • 2015-06. Periodic portfolio revision with transaction costs in MATHEMATICAL METHODS OF OPERATIONS RESEARCH
  • 2014-10. Portfolio selection in the presence of systemic risk in JOURNAL OF ASSET MANAGEMENT
  • 2010-04. Robust portfolios: contributions from operations research and finance in ANNALS OF OPERATIONS RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10479-018-2890-3

    DOI

    http://dx.doi.org/10.1007/s10479-018-2890-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104043796


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1502", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Banking, Finance and Investment", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Commerce, Management, Tourism and Services", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Technical University of Ostrava", 
              "id": "https://www.grid.ac/institutes/grid.440850.d", 
              "name": [
                "Department MEQM, University of Bergamo, Via dei Caniana 2, 24 127, Bergamo, Italy", 
                "Department of Finance, Faculty of Economics, Technical University Ostrava, Sokolsk\u00e1 33, 702 00, Ostrava, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ortobelli", 
            "givenName": "Sergio", 
            "id": "sg:person.015204125561.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015204125561.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Ostrava", 
              "id": "https://www.grid.ac/institutes/grid.440850.d", 
              "name": [
                "Department MEQM, University of Bergamo, Via dei Caniana 2, 24 127, Bergamo, Italy", 
                "Department of Finance, Faculty of Economics, Technical University Ostrava, Sokolsk\u00e1 33, 702 00, Ostrava, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kouaissah", 
            "givenName": "Noureddine", 
            "id": "sg:person.012335641042.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012335641042.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Ostrava", 
              "id": "https://www.grid.ac/institutes/grid.440850.d", 
              "name": [
                "Department of Finance, Faculty of Economics, Technical University Ostrava, Sokolsk\u00e1 33, 702 00, Ostrava, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tich\u00fd", 
            "givenName": "Tom\u00e1\u0161", 
            "id": "sg:person.015647223443.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015647223443.42"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00186-015-0500-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002927711", 
              "https://doi.org/10.1007/s00186-015-0500-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1467-9965.00068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003263023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0927-5398(03)00007-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003480549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0927-5398(03)00007-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003480549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/13504860701255292", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005544387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0531(83)90129-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012018463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0047-259x(89)90023-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016719914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbankfin.2006.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018217207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jeconom.2012.08.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019358169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/jam.2014.30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020275042", 
              "https://doi.org/10.1057/jam.2014.30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1468-0262.00167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020316539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10479-015-1962-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023167941", 
              "https://doi.org/10.1007/s10479-015-1962-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2008.02.045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026047823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10479-009-0515-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030399306", 
              "https://doi.org/10.1007/s10479-009-0515-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10479-009-0515-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030399306", 
              "https://doi.org/10.1007/s10479-009-0515-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.iref.2016.07.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032296401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1540-6261.1997.tb02748.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032310710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022109000004129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039155115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0022109000004129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039155115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbankfin.2007.12.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040066251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1540-6261.1983.tb02499.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040068340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-0531(78)90073-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044153990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/0022-1082.215228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051534834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/wilm.42820030619", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054481676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1996.10476701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/257177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058570658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/294632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058604458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/294743", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058604569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/rfs/hhm075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060005956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1109020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062865774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219024908004713", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062986196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1176325632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064406726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2296205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069867821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2469/faj.v60.n4.2636", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070835439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3905/jpm.1994.409501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071563659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3905/jpm.2004.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071564115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3905/jpm.2004.443328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071564179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0470870230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0470870230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098661174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/8661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098921024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109503092", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109503092", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109503092", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0470010940", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109503092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0470010940", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109503092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109701408", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9781118673331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109701408"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "In this paper, we examine the use of conditional expectation, either to reduce the dimensionality of large-scale portfolio problems or to propose alternative reward\u2013risk performance measures. In particular, we focus on two financial problems. In the first part, we discuss and examine correlation measures (based on a conditional expectation) used to approximate the returns in large-scale portfolio problems. Then, we compare the impact of alternative return approximation methodologies on the ex-post wealth of a classic portfolio strategy. In this context, we show that correlation measures that use the conditional expectation perform better than the classic measures do. Moreover, the correlation measure typically used for returns in the domain of attraction of a stable law works better than the classic Pearson correlation does. In the second part, we propose new performance measures based on a conditional expectation that take into account the heavy tails of the return distributions. Then, we examine portfolio strategies based on optimizing the proposed performance measures. In particular, we compare the ex-post wealth obtained from applying the portfolio strategies, which use alternative performance measures based on a conditional expectation. In doing so, we propose an alternative use of conditional expectation in various portfolio problems.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10479-018-2890-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7071470", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1048429", 
            "issn": [
              "0254-5330", 
              "1572-9338"
            ], 
            "name": "Annals of Operations Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "274"
          }
        ], 
        "name": "On the use of conditional expectation in portfolio selection problems", 
        "pagination": "501-530", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c90d8fdcf4d7099571e3245167b050aff20049416285826628d924ab13a044d2"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10479-018-2890-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104043796"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10479-018-2890-3", 
          "https://app.dimensions.ai/details/publication/pub.1104043796"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130826_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10479-018-2890-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10479-018-2890-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10479-018-2890-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10479-018-2890-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10479-018-2890-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    200 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10479-018-2890-3 schema:about anzsrc-for:15
    2 anzsrc-for:1502
    3 schema:author Ndc929f1a49154148bf8561b9cb988383
    4 schema:citation sg:pub.10.1007/s00186-015-0500-6
    5 sg:pub.10.1007/s10479-009-0515-6
    6 sg:pub.10.1007/s10479-015-1962-x
    7 sg:pub.10.1057/jam.2014.30
    8 https://app.dimensions.ai/details/publication/pub.1109503092
    9 https://app.dimensions.ai/details/publication/pub.1109701408
    10 https://doi.org/10.1002/0470010940
    11 https://doi.org/10.1002/0470870230
    12 https://doi.org/10.1002/9781118673331
    13 https://doi.org/10.1002/wilm.42820030619
    14 https://doi.org/10.1016/0022-0531(78)90073-x
    15 https://doi.org/10.1016/0022-0531(83)90129-1
    16 https://doi.org/10.1016/0047-259x(89)90023-7
    17 https://doi.org/10.1016/j.iref.2016.07.011
    18 https://doi.org/10.1016/j.jbankfin.2006.12.003
    19 https://doi.org/10.1016/j.jbankfin.2007.12.026
    20 https://doi.org/10.1016/j.jeconom.2012.08.008
    21 https://doi.org/10.1016/j.physa.2008.02.045
    22 https://doi.org/10.1016/s0927-5398(03)00007-0
    23 https://doi.org/10.1017/s0022109000004129
    24 https://doi.org/10.1080/01621459.1996.10476701
    25 https://doi.org/10.1080/13504860701255292
    26 https://doi.org/10.1086/257177
    27 https://doi.org/10.1086/294632
    28 https://doi.org/10.1086/294743
    29 https://doi.org/10.1093/rfs/hhm075
    30 https://doi.org/10.1111/0022-1082.215228
    31 https://doi.org/10.1111/1467-9965.00068
    32 https://doi.org/10.1111/1468-0262.00167
    33 https://doi.org/10.1111/j.1540-6261.1983.tb02499.x
    34 https://doi.org/10.1111/j.1540-6261.1997.tb02748.x
    35 https://doi.org/10.1137/1109020
    36 https://doi.org/10.1142/8661
    37 https://doi.org/10.1142/s0219024908004713
    38 https://doi.org/10.1214/aos/1176325632
    39 https://doi.org/10.2307/2296205
    40 https://doi.org/10.2469/faj.v60.n4.2636
    41 https://doi.org/10.3905/jpm.1994.409501
    42 https://doi.org/10.3905/jpm.2004.110
    43 https://doi.org/10.3905/jpm.2004.443328
    44 schema:datePublished 2019-03
    45 schema:datePublishedReg 2019-03-01
    46 schema:description In this paper, we examine the use of conditional expectation, either to reduce the dimensionality of large-scale portfolio problems or to propose alternative reward–risk performance measures. In particular, we focus on two financial problems. In the first part, we discuss and examine correlation measures (based on a conditional expectation) used to approximate the returns in large-scale portfolio problems. Then, we compare the impact of alternative return approximation methodologies on the ex-post wealth of a classic portfolio strategy. In this context, we show that correlation measures that use the conditional expectation perform better than the classic measures do. Moreover, the correlation measure typically used for returns in the domain of attraction of a stable law works better than the classic Pearson correlation does. In the second part, we propose new performance measures based on a conditional expectation that take into account the heavy tails of the return distributions. Then, we examine portfolio strategies based on optimizing the proposed performance measures. In particular, we compare the ex-post wealth obtained from applying the portfolio strategies, which use alternative performance measures based on a conditional expectation. In doing so, we propose an alternative use of conditional expectation in various portfolio problems.
    47 schema:genre research_article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree false
    50 schema:isPartOf N8b5296b5d6ac446caf2bf75e7de60a55
    51 Nb973f62f2cce4d28bfc16a36190be14b
    52 sg:journal.1048429
    53 schema:name On the use of conditional expectation in portfolio selection problems
    54 schema:pagination 501-530
    55 schema:productId N161db901c79e4595ac0059027af701e1
    56 N6659fb70c2c74aec85c3f29da66e06dd
    57 N876186b06d0f4e4493c42336d30be8bb
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104043796
    59 https://doi.org/10.1007/s10479-018-2890-3
    60 schema:sdDatePublished 2019-04-11T14:00
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher N8854e953ff674f08a0d14fee6dce23ba
    63 schema:url https://link.springer.com/10.1007%2Fs10479-018-2890-3
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N161db901c79e4595ac0059027af701e1 schema:name doi
    68 schema:value 10.1007/s10479-018-2890-3
    69 rdf:type schema:PropertyValue
    70 N6659fb70c2c74aec85c3f29da66e06dd schema:name readcube_id
    71 schema:value c90d8fdcf4d7099571e3245167b050aff20049416285826628d924ab13a044d2
    72 rdf:type schema:PropertyValue
    73 N876186b06d0f4e4493c42336d30be8bb schema:name dimensions_id
    74 schema:value pub.1104043796
    75 rdf:type schema:PropertyValue
    76 N8854e953ff674f08a0d14fee6dce23ba schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 N8b5296b5d6ac446caf2bf75e7de60a55 schema:volumeNumber 274
    79 rdf:type schema:PublicationVolume
    80 Nb973f62f2cce4d28bfc16a36190be14b schema:issueNumber 1-2
    81 rdf:type schema:PublicationIssue
    82 Nd2dfcf737c074769af5f6891852c9be4 rdf:first sg:person.015647223443.42
    83 rdf:rest rdf:nil
    84 Ndc929f1a49154148bf8561b9cb988383 rdf:first sg:person.015204125561.67
    85 rdf:rest Nea658f1f595640b5894f46d21d5469da
    86 Nea658f1f595640b5894f46d21d5469da rdf:first sg:person.012335641042.01
    87 rdf:rest Nd2dfcf737c074769af5f6891852c9be4
    88 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Commerce, Management, Tourism and Services
    90 rdf:type schema:DefinedTerm
    91 anzsrc-for:1502 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Banking, Finance and Investment
    93 rdf:type schema:DefinedTerm
    94 sg:grant.7071470 http://pending.schema.org/fundedItem sg:pub.10.1007/s10479-018-2890-3
    95 rdf:type schema:MonetaryGrant
    96 sg:journal.1048429 schema:issn 0254-5330
    97 1572-9338
    98 schema:name Annals of Operations Research
    99 rdf:type schema:Periodical
    100 sg:person.012335641042.01 schema:affiliation https://www.grid.ac/institutes/grid.440850.d
    101 schema:familyName Kouaissah
    102 schema:givenName Noureddine
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012335641042.01
    104 rdf:type schema:Person
    105 sg:person.015204125561.67 schema:affiliation https://www.grid.ac/institutes/grid.440850.d
    106 schema:familyName Ortobelli
    107 schema:givenName Sergio
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015204125561.67
    109 rdf:type schema:Person
    110 sg:person.015647223443.42 schema:affiliation https://www.grid.ac/institutes/grid.440850.d
    111 schema:familyName Tichý
    112 schema:givenName Tomáš
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015647223443.42
    114 rdf:type schema:Person
    115 sg:pub.10.1007/s00186-015-0500-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002927711
    116 https://doi.org/10.1007/s00186-015-0500-6
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s10479-009-0515-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030399306
    119 https://doi.org/10.1007/s10479-009-0515-6
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s10479-015-1962-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023167941
    122 https://doi.org/10.1007/s10479-015-1962-x
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1057/jam.2014.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020275042
    125 https://doi.org/10.1057/jam.2014.30
    126 rdf:type schema:CreativeWork
    127 https://app.dimensions.ai/details/publication/pub.1109503092 schema:CreativeWork
    128 https://app.dimensions.ai/details/publication/pub.1109701408 schema:CreativeWork
    129 https://doi.org/10.1002/0470010940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109503092
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1002/0470870230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661174
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1002/9781118673331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109701408
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1002/wilm.42820030619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054481676
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/0022-0531(78)90073-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044153990
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/0022-0531(83)90129-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012018463
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/0047-259x(89)90023-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016719914
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.iref.2016.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032296401
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.jbankfin.2006.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018217207
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.jbankfin.2007.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040066251
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.jeconom.2012.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019358169
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.physa.2008.02.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026047823
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/s0927-5398(03)00007-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003480549
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1017/s0022109000004129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039155115
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1080/01621459.1996.10476701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304984
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1080/13504860701255292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005544387
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1086/257177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058570658
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1086/294632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058604458
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1086/294743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058604569
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1093/rfs/hhm075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060005956
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1111/0022-1082.215228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051534834
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1111/1467-9965.00068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003263023
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1111/1468-0262.00167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020316539
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1111/j.1540-6261.1983.tb02499.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040068340
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1111/j.1540-6261.1997.tb02748.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032310710
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1137/1109020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062865774
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1142/8661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098921024
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1142/s0219024908004713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062986196
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1214/aos/1176325632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064406726
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.2307/2296205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069867821
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.2469/faj.v60.n4.2636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070835439
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.3905/jpm.1994.409501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071563659
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.3905/jpm.2004.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071564115
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.3905/jpm.2004.443328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071564179
    196 rdf:type schema:CreativeWork
    197 https://www.grid.ac/institutes/grid.440850.d schema:alternateName Technical University of Ostrava
    198 schema:name Department MEQM, University of Bergamo, Via dei Caniana 2, 24 127, Bergamo, Italy
    199 Department of Finance, Faculty of Economics, Technical University Ostrava, Sokolská 33, 702 00, Ostrava, Czech Republic
    200 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...