Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07

AUTHORS

Cuiqing Jiang, Zhao Wang, Ruiya Wang, Yong Ding

ABSTRACT

Predicting whether a borrower will default on a loan is of significant concern to platforms and investors in online peer-to-peer (P2P) lending. Because the data types online platforms use are complex and involve unstructured information such as text, which is difficult to quantify and analyze, loan default prediction faces new challenges in P2P. To this end, we propose a default prediction method for P2P lending combined with soft information related to textual description. We introduce a topic model to extract valuable features from the descriptive text concerning loans and construct four default prediction models to demonstrate the performance of these features for default prediction. Moreover, a two-stage method is designed to select an effective feature set containing both soft and hard information. An empirical analysis using real-word data from a major P2P lending platform in China shows that the proposed method can improve loan default prediction performance compared with existing methods based only on hard information. More... »

PAGES

511-529

References to SciGraph publications

  • 1997-11. Bayesian Network Classifiers in MACHINE LEARNING
  • 2005-05. Logistic Model Trees in MACHINE LEARNING
  • 2001-10. Random Forests in MACHINE LEARNING
  • 2010-01. Consumer finance: challenges for operational research in JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
  • 1995-09. Support-vector networks in MACHINE LEARNING
  • 2012-10. Risk estimation and risk prediction using machine-learning methods in HUMAN GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10479-017-2668-z

    DOI

    http://dx.doi.org/10.1007/s10479-017-2668-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092062063


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hefei University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.256896.6", 
              "name": [
                "School of Management, Hefei University of Technology, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "Cuiqing", 
            "id": "sg:person.010503555327.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010503555327.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.256896.6", 
              "name": [
                "School of Management, Hefei University of Technology, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Zhao", 
            "id": "sg:person.011530234501.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011530234501.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.256896.6", 
              "name": [
                "School of Management, Hefei University of Technology, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Ruiya", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.256896.6", 
              "name": [
                "School of Management, Hefei University of Technology, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ding", 
            "givenName": "Yong", 
            "id": "sg:person.015662000727.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015662000727.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.knosys.2011.06.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000820717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1353/jhr.2011.0025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001807485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00036846.2014.962222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002396045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2308/accr-50159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003241363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/jors.2009.104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004517614", 
              "https://doi.org/10.1057/jors.2009.104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-005-0466-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005110454", 
              "https://doi.org/10.1007/s10994-005-0466-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-005-0466-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005110454", 
              "https://doi.org/10.1007/s10994-005-0466-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2013.03.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007185396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4018/ijcini.2016010101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009707511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1148170.1148204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012019008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.knosys.2013.07.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015233204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2015.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023254877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2006.07.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024847633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00994018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025150743", 
              "https://doi.org/10.1007/bf00994018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2015.05.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029117237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2014.06.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029671060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007465528199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030680500", 
              "https://doi.org/10.1023/a:1007465528199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2010.09.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038291129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dss.2009.12.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038775809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dss.2010.11.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039169042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2013.01.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039608987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/isaf.325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040176563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2006.09.100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043371496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-012-1194-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046424518", 
              "https://doi.org/10.1007/s00439-012-1194-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-012-1194-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046424518", 
              "https://doi.org/10.1007/s00439-012-1194-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-012-1194-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046424518", 
              "https://doi.org/10.1007/s00439-012-1194-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2015.05.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046811115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbankfin.2015.11.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048960925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2015.01.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049636612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0973801013506401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063916470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0973801013506401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063916470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/mnsc.1120.1560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064715707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/mnsc.2015.2181", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064717916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4156/ijact.vol4.issue22.14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072278308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jsbm.12318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084215756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2139/ssrn.2446114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102409142"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07", 
        "datePublishedReg": "2018-07-01", 
        "description": "Predicting whether a borrower will default on a loan is of significant concern to platforms and investors in online peer-to-peer (P2P) lending. Because the data types online platforms use are complex and involve unstructured information such as text, which is difficult to quantify and analyze, loan default prediction faces new challenges in P2P. To this end, we propose a default prediction method for P2P lending combined with soft information related to textual description. We introduce a topic model to extract valuable features from the descriptive text concerning loans and construct four default prediction models to demonstrate the performance of these features for default prediction. Moreover, a two-stage method is designed to select an effective feature set containing both soft and hard information. An empirical analysis using real-word data from a major P2P lending platform in China shows that the proposed method can improve loan default prediction performance compared with existing methods based only on hard information.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10479-017-2668-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1048429", 
            "issn": [
              "0254-5330", 
              "1572-9338"
            ], 
            "name": "Annals of Operations Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "266"
          }
        ], 
        "name": "Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending", 
        "pagination": "511-529", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "959e473ec24b09bdd89864121f86acc2ea242f5d71905d61f02357e61bc66017"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10479-017-2668-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092062063"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10479-017-2668-z", 
          "https://app.dimensions.ai/details/publication/pub.1092062063"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000601.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10479-017-2668-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10479-017-2668-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10479-017-2668-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10479-017-2668-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10479-017-2668-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    186 TRIPLES      21 PREDICATES      60 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10479-017-2668-z schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author Nd84f3d632be2444fa8b395898b466442
    4 schema:citation sg:pub.10.1007/bf00994018
    5 sg:pub.10.1007/s00439-012-1194-y
    6 sg:pub.10.1007/s10994-005-0466-3
    7 sg:pub.10.1023/a:1007465528199
    8 sg:pub.10.1023/a:1010933404324
    9 sg:pub.10.1057/jors.2009.104
    10 https://doi.org/10.1002/isaf.325
    11 https://doi.org/10.1016/j.dss.2009.12.009
    12 https://doi.org/10.1016/j.dss.2010.11.033
    13 https://doi.org/10.1016/j.ejor.2006.09.100
    14 https://doi.org/10.1016/j.ejor.2010.09.029
    15 https://doi.org/10.1016/j.ejor.2014.06.043
    16 https://doi.org/10.1016/j.ejor.2015.01.033
    17 https://doi.org/10.1016/j.ejor.2015.05.030
    18 https://doi.org/10.1016/j.ejor.2015.05.050
    19 https://doi.org/10.1016/j.eswa.2006.07.007
    20 https://doi.org/10.1016/j.eswa.2013.01.044
    21 https://doi.org/10.1016/j.eswa.2013.03.019
    22 https://doi.org/10.1016/j.eswa.2015.02.001
    23 https://doi.org/10.1016/j.jbankfin.2015.11.009
    24 https://doi.org/10.1016/j.knosys.2011.06.020
    25 https://doi.org/10.1016/j.knosys.2013.07.008
    26 https://doi.org/10.1080/00036846.2014.962222
    27 https://doi.org/10.1111/jsbm.12318
    28 https://doi.org/10.1145/1148170.1148204
    29 https://doi.org/10.1177/0973801013506401
    30 https://doi.org/10.1287/mnsc.1120.1560
    31 https://doi.org/10.1287/mnsc.2015.2181
    32 https://doi.org/10.1353/jhr.2011.0025
    33 https://doi.org/10.2139/ssrn.2446114
    34 https://doi.org/10.2308/accr-50159
    35 https://doi.org/10.4018/ijcini.2016010101
    36 https://doi.org/10.4156/ijact.vol4.issue22.14
    37 schema:datePublished 2018-07
    38 schema:datePublishedReg 2018-07-01
    39 schema:description Predicting whether a borrower will default on a loan is of significant concern to platforms and investors in online peer-to-peer (P2P) lending. Because the data types online platforms use are complex and involve unstructured information such as text, which is difficult to quantify and analyze, loan default prediction faces new challenges in P2P. To this end, we propose a default prediction method for P2P lending combined with soft information related to textual description. We introduce a topic model to extract valuable features from the descriptive text concerning loans and construct four default prediction models to demonstrate the performance of these features for default prediction. Moreover, a two-stage method is designed to select an effective feature set containing both soft and hard information. An empirical analysis using real-word data from a major P2P lending platform in China shows that the proposed method can improve loan default prediction performance compared with existing methods based only on hard information.
    40 schema:genre research_article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree false
    43 schema:isPartOf Ndbc4def90ad64b458c3f66a71a0f09d4
    44 Nf2155d8bfd3741ce8bcaa77190fbc3ab
    45 sg:journal.1048429
    46 schema:name Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending
    47 schema:pagination 511-529
    48 schema:productId N20beaba4055e4a9fa8496fe74401b3eb
    49 N7cf5d48131024d13b605de1c84e0fdb2
    50 Nad44c5446c4840558b051918064d7d74
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092062063
    52 https://doi.org/10.1007/s10479-017-2668-z
    53 schema:sdDatePublished 2019-04-10T20:10
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher N7f26ec4811284413909d19dd9cb193a8
    56 schema:url https://link.springer.com/10.1007%2Fs10479-017-2668-z
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset articles
    59 rdf:type schema:ScholarlyArticle
    60 N06932bfcc58c496cac33ee5e42e16ab3 rdf:first sg:person.015662000727.00
    61 rdf:rest rdf:nil
    62 N0a3bd2b790c74448a955e8290b134b28 rdf:first sg:person.011530234501.85
    63 rdf:rest Nbb9f6a74b4f54026a2a866d223b8b390
    64 N20beaba4055e4a9fa8496fe74401b3eb schema:name readcube_id
    65 schema:value 959e473ec24b09bdd89864121f86acc2ea242f5d71905d61f02357e61bc66017
    66 rdf:type schema:PropertyValue
    67 N64cfd2d062c548faa0bb5d8a42fc4b5b schema:affiliation https://www.grid.ac/institutes/grid.256896.6
    68 schema:familyName Wang
    69 schema:givenName Ruiya
    70 rdf:type schema:Person
    71 N7cf5d48131024d13b605de1c84e0fdb2 schema:name dimensions_id
    72 schema:value pub.1092062063
    73 rdf:type schema:PropertyValue
    74 N7f26ec4811284413909d19dd9cb193a8 schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 Nad44c5446c4840558b051918064d7d74 schema:name doi
    77 schema:value 10.1007/s10479-017-2668-z
    78 rdf:type schema:PropertyValue
    79 Nbb9f6a74b4f54026a2a866d223b8b390 rdf:first N64cfd2d062c548faa0bb5d8a42fc4b5b
    80 rdf:rest N06932bfcc58c496cac33ee5e42e16ab3
    81 Nd84f3d632be2444fa8b395898b466442 rdf:first sg:person.010503555327.26
    82 rdf:rest N0a3bd2b790c74448a955e8290b134b28
    83 Ndbc4def90ad64b458c3f66a71a0f09d4 schema:volumeNumber 266
    84 rdf:type schema:PublicationVolume
    85 Nf2155d8bfd3741ce8bcaa77190fbc3ab schema:issueNumber 1-2
    86 rdf:type schema:PublicationIssue
    87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Information and Computing Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Information Systems
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1048429 schema:issn 0254-5330
    94 1572-9338
    95 schema:name Annals of Operations Research
    96 rdf:type schema:Periodical
    97 sg:person.010503555327.26 schema:affiliation https://www.grid.ac/institutes/grid.256896.6
    98 schema:familyName Jiang
    99 schema:givenName Cuiqing
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010503555327.26
    101 rdf:type schema:Person
    102 sg:person.011530234501.85 schema:affiliation https://www.grid.ac/institutes/grid.256896.6
    103 schema:familyName Wang
    104 schema:givenName Zhao
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011530234501.85
    106 rdf:type schema:Person
    107 sg:person.015662000727.00 schema:affiliation https://www.grid.ac/institutes/grid.256896.6
    108 schema:familyName Ding
    109 schema:givenName Yong
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015662000727.00
    111 rdf:type schema:Person
    112 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
    113 https://doi.org/10.1007/bf00994018
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s00439-012-1194-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046424518
    116 https://doi.org/10.1007/s00439-012-1194-y
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s10994-005-0466-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005110454
    119 https://doi.org/10.1007/s10994-005-0466-3
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1023/a:1007465528199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030680500
    122 https://doi.org/10.1023/a:1007465528199
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    125 https://doi.org/10.1023/a:1010933404324
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1057/jors.2009.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004517614
    128 https://doi.org/10.1057/jors.2009.104
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1002/isaf.325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040176563
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.dss.2009.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038775809
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.dss.2010.11.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039169042
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.ejor.2006.09.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043371496
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.ejor.2010.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038291129
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.ejor.2014.06.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029671060
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.ejor.2015.01.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049636612
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.ejor.2015.05.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029117237
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.ejor.2015.05.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046811115
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.eswa.2006.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024847633
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.eswa.2013.01.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039608987
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.eswa.2013.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007185396
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.eswa.2015.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023254877
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.jbankfin.2015.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048960925
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.knosys.2011.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000820717
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.knosys.2013.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015233204
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1080/00036846.2014.962222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002396045
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1111/jsbm.12318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084215756
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1145/1148170.1148204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012019008
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1177/0973801013506401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063916470
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1287/mnsc.1120.1560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064715707
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1287/mnsc.2015.2181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064717916
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1353/jhr.2011.0025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001807485
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.2139/ssrn.2446114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102409142
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.2308/accr-50159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003241363
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.4018/ijcini.2016010101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009707511
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.4156/ijact.vol4.issue22.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072278308
    183 rdf:type schema:CreativeWork
    184 https://www.grid.ac/institutes/grid.256896.6 schema:alternateName Hefei University of Technology
    185 schema:name School of Management, Hefei University of Technology, Hefei, Anhui, China
    186 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...