On the robustness of portfolio allocation under copula misspecification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

Abdallah Ben Saida, Jean-luc Prigent

ABSTRACT

The copula theory allows to easily model the probability distributions of random vectors by separately estimating the marginal distributions and the dependence structure of the components represented by the copula itself. Copula functions generally provide significant improvements to the financial portfolio allocation problem. However, being given the large spectrum of available copulas, the choice of the best model is rather complex. This paper investigates the copula misspecification impact on the portfolio allocation problem, which is an important risk model issue. We address this issue from the perspective of the behavioral portfolio theory through the Zakamouline (Quant Finance 14(4):699–710, 2014) approach by considering an investor allocating his wealth between a risk-free asset and a risky asset. Our main objective is to assess investors’ sensitivities to the choice of the probability of the random vector, namely both the marginal distributions and the copula function. This analysis is conducted with respect to their degrees of risk and loss aversions, for different compositions of the risky asset, and for different investment horizons. More... »

PAGES

631-652

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10479-016-2137-0

DOI

http://dx.doi.org/10.1007/s10479-016-2137-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046421924


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Banking, Finance and Investment", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Commerce, Management, Tourism and Services", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Th\u00e9orie Economique, Mod\u00e9lisation et Applications", 
          "id": "https://www.grid.ac/institutes/grid.462609.f", 
          "name": [
            "ThEMA, University of Cergy-Pontoise, Cergy-Pontoise, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saida", 
        "givenName": "Abdallah Ben", 
        "id": "sg:person.011325342505.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011325342505.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Th\u00e9orie Economique, Mod\u00e9lisation et Applications", 
          "id": "https://www.grid.ac/institutes/grid.462609.f", 
          "name": [
            "ThEMA, University of Cergy-Pontoise, Cergy-Pontoise, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prigent", 
        "givenName": "Jean-luc", 
        "id": "sg:person.013527020573.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527020573.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/b978-044450896-6.50010-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007253449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14697688.2011.620978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007967962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-6261.1952.tb01525.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015382472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jedc.2010.06.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015791222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-008-0447-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028864732", 
          "https://doi.org/10.1007/s10479-008-0447-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jjfinec/nbh006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029277285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-2354.2006.00387.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029527568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.parco.2009.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032467750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.insmatheco.2007.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037667722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.econmod.2014.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038398179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018980308807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039747566", 
          "https://doi.org/10.1023/a:1018980308807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00122574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041153045", 
          "https://doi.org/10.1007/bf00122574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00122574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041153045", 
          "https://doi.org/10.1007/bf00122574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00181-012-0577-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041637770", 
          "https://doi.org/10.1007/s00181-012-0577-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0531(70)90002-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044654870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmva.2012.02.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044748843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0391-5026.2004.00135.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047918002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbankfin.2010.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053498550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/rfs/hhg044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060005758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21314/jor.2000.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068977586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2118511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069769008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2527081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069973107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3905/jai.2002.319052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071558120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3905/jai.2007.688992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071558298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1573-4412(05)80018-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090061607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199549498.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098793898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b13150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109727365"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "The copula theory allows to easily model the probability distributions of random vectors by separately estimating the marginal distributions and the dependence structure of the components represented by the copula itself. Copula functions generally provide significant improvements to the financial portfolio allocation problem. However, being given the large spectrum of available copulas, the choice of the best model is rather complex. This paper investigates the copula misspecification impact on the portfolio allocation problem, which is an important risk model issue. We address this issue from the perspective of the behavioral portfolio theory through the Zakamouline (Quant Finance 14(4):699\u2013710, 2014) approach by considering an investor allocating his wealth between a risk-free asset and a risky asset. Our main objective is to assess investors\u2019 sensitivities to the choice of the probability of the random vector, namely both the marginal distributions and the copula function. This analysis is conducted with respect to their degrees of risk and loss aversions, for different compositions of the risky asset, and for different investment horizons.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10479-016-2137-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048429", 
        "issn": [
          "0254-5330", 
          "1572-9338"
        ], 
        "name": "Annals of Operations Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "262"
      }
    ], 
    "name": "On the robustness of portfolio allocation under copula misspecification", 
    "pagination": "631-652", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dd21feceffeb8f4d57afa4896be3547124b3361c01b95e3c7a363737381b105d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10479-016-2137-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046421924"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10479-016-2137-0", 
      "https://app.dimensions.ai/details/publication/pub.1046421924"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113661_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10479-016-2137-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10479-016-2137-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10479-016-2137-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10479-016-2137-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10479-016-2137-0'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10479-016-2137-0 schema:about anzsrc-for:15
2 anzsrc-for:1502
3 schema:author N7f509d4b5f5c443888c8bcbf41c021d9
4 schema:citation sg:pub.10.1007/bf00122574
5 sg:pub.10.1007/s00181-012-0577-1
6 sg:pub.10.1007/s10479-008-0447-6
7 sg:pub.10.1023/a:1018980308807
8 https://doi.org/10.1016/0022-0531(70)90002-5
9 https://doi.org/10.1016/b978-044450896-6.50010-8
10 https://doi.org/10.1016/j.econmod.2014.10.001
11 https://doi.org/10.1016/j.insmatheco.2007.10.005
12 https://doi.org/10.1016/j.jbankfin.2010.12.001
13 https://doi.org/10.1016/j.jedc.2010.06.021
14 https://doi.org/10.1016/j.jmva.2012.02.021
15 https://doi.org/10.1016/j.parco.2009.10.001
16 https://doi.org/10.1016/s1573-4412(05)80018-2
17 https://doi.org/10.1080/14697688.2011.620978
18 https://doi.org/10.1093/acprof:oso/9780199549498.001.0001
19 https://doi.org/10.1093/jjfinec/nbh006
20 https://doi.org/10.1093/rfs/hhg044
21 https://doi.org/10.1111/j.0391-5026.2004.00135.x
22 https://doi.org/10.1111/j.1468-2354.2006.00387.x
23 https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
24 https://doi.org/10.1201/b13150
25 https://doi.org/10.21314/jor.2000.038
26 https://doi.org/10.2307/2118511
27 https://doi.org/10.2307/2527081
28 https://doi.org/10.3905/jai.2002.319052
29 https://doi.org/10.3905/jai.2007.688992
30 schema:datePublished 2018-03
31 schema:datePublishedReg 2018-03-01
32 schema:description The copula theory allows to easily model the probability distributions of random vectors by separately estimating the marginal distributions and the dependence structure of the components represented by the copula itself. Copula functions generally provide significant improvements to the financial portfolio allocation problem. However, being given the large spectrum of available copulas, the choice of the best model is rather complex. This paper investigates the copula misspecification impact on the portfolio allocation problem, which is an important risk model issue. We address this issue from the perspective of the behavioral portfolio theory through the Zakamouline (Quant Finance 14(4):699–710, 2014) approach by considering an investor allocating his wealth between a risk-free asset and a risky asset. Our main objective is to assess investors’ sensitivities to the choice of the probability of the random vector, namely both the marginal distributions and the copula function. This analysis is conducted with respect to their degrees of risk and loss aversions, for different compositions of the risky asset, and for different investment horizons.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N20ed694c5f754890a7d11b459fe987bf
37 N9c715ef0a5444d149f0e660a16495846
38 sg:journal.1048429
39 schema:name On the robustness of portfolio allocation under copula misspecification
40 schema:pagination 631-652
41 schema:productId N1642b2db9fb1464c8c1a695a53e07d67
42 N6a40493e1f79492ca2479317ec525891
43 N8e0d29fe426f41b391e3f4a4f8306e02
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046421924
45 https://doi.org/10.1007/s10479-016-2137-0
46 schema:sdDatePublished 2019-04-11T10:33
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N0af8c29e7635472e94bf9ca3c69e85d1
49 schema:url https://link.springer.com/10.1007%2Fs10479-016-2137-0
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0af8c29e7635472e94bf9ca3c69e85d1 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N1642b2db9fb1464c8c1a695a53e07d67 schema:name readcube_id
56 schema:value dd21feceffeb8f4d57afa4896be3547124b3361c01b95e3c7a363737381b105d
57 rdf:type schema:PropertyValue
58 N20ed694c5f754890a7d11b459fe987bf schema:issueNumber 2
59 rdf:type schema:PublicationIssue
60 N6a40493e1f79492ca2479317ec525891 schema:name dimensions_id
61 schema:value pub.1046421924
62 rdf:type schema:PropertyValue
63 N7f509d4b5f5c443888c8bcbf41c021d9 rdf:first sg:person.011325342505.35
64 rdf:rest Nfd60e25f6ccb40acb5cba6bd39b42997
65 N8e0d29fe426f41b391e3f4a4f8306e02 schema:name doi
66 schema:value 10.1007/s10479-016-2137-0
67 rdf:type schema:PropertyValue
68 N9c715ef0a5444d149f0e660a16495846 schema:volumeNumber 262
69 rdf:type schema:PublicationVolume
70 Nfd60e25f6ccb40acb5cba6bd39b42997 rdf:first sg:person.013527020573.28
71 rdf:rest rdf:nil
72 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
73 schema:name Commerce, Management, Tourism and Services
74 rdf:type schema:DefinedTerm
75 anzsrc-for:1502 schema:inDefinedTermSet anzsrc-for:
76 schema:name Banking, Finance and Investment
77 rdf:type schema:DefinedTerm
78 sg:journal.1048429 schema:issn 0254-5330
79 1572-9338
80 schema:name Annals of Operations Research
81 rdf:type schema:Periodical
82 sg:person.011325342505.35 schema:affiliation https://www.grid.ac/institutes/grid.462609.f
83 schema:familyName Saida
84 schema:givenName Abdallah Ben
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011325342505.35
86 rdf:type schema:Person
87 sg:person.013527020573.28 schema:affiliation https://www.grid.ac/institutes/grid.462609.f
88 schema:familyName Prigent
89 schema:givenName Jean-luc
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527020573.28
91 rdf:type schema:Person
92 sg:pub.10.1007/bf00122574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041153045
93 https://doi.org/10.1007/bf00122574
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s00181-012-0577-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041637770
96 https://doi.org/10.1007/s00181-012-0577-1
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s10479-008-0447-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028864732
99 https://doi.org/10.1007/s10479-008-0447-6
100 rdf:type schema:CreativeWork
101 sg:pub.10.1023/a:1018980308807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039747566
102 https://doi.org/10.1023/a:1018980308807
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0022-0531(70)90002-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044654870
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/b978-044450896-6.50010-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007253449
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.econmod.2014.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038398179
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.insmatheco.2007.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037667722
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.jbankfin.2010.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053498550
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.jedc.2010.06.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015791222
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jmva.2012.02.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044748843
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.parco.2009.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032467750
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s1573-4412(05)80018-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090061607
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1080/14697688.2011.620978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007967962
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1093/acprof:oso/9780199549498.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098793898
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1093/jjfinec/nbh006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029277285
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1093/rfs/hhg044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060005758
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1111/j.0391-5026.2004.00135.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047918002
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1111/j.1468-2354.2006.00387.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029527568
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1111/j.1540-6261.1952.tb01525.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015382472
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1201/b13150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109727365
137 rdf:type schema:CreativeWork
138 https://doi.org/10.21314/jor.2000.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068977586
139 rdf:type schema:CreativeWork
140 https://doi.org/10.2307/2118511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069769008
141 rdf:type schema:CreativeWork
142 https://doi.org/10.2307/2527081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069973107
143 rdf:type schema:CreativeWork
144 https://doi.org/10.3905/jai.2002.319052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071558120
145 rdf:type schema:CreativeWork
146 https://doi.org/10.3905/jai.2007.688992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071558298
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.462609.f schema:alternateName Théorie Economique, Modélisation et Applications
149 schema:name ThEMA, University of Cergy-Pontoise, Cergy-Pontoise, France
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...