On the Lp-Bound for Trigonometric Integrals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08-17

AUTHORS

A. R. Safarov

ABSTRACT

In this paper we consider the summation problem for two-dimensional trigonometrical integrals with a third-order polynomial phase. We find the sharp convergence exponent using the estimates for trigonometric integrals.

PAGES

153-176

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10476-018-0407-6

DOI

http://dx.doi.org/10.1007/s10476-018-0407-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106195765


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanics and Mathematics, Samarkand State University, 15 University Boulevard, 140104, Samarkand, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.77443.33", 
          "name": [
            "Department of Mechanics and Mathematics, Samarkand State University, 15 University Boulevard, 140104, Samarkand, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Safarov", 
        "givenName": "A. R.", 
        "id": "sg:person.016267226060.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016267226060.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0001434610050093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025307836", 
          "https://doi.org/10.1134/s0001434610050093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02567374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047078521", 
          "https://doi.org/10.1007/bf02567374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5154-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025802669", 
          "https://doi.org/10.1007/978-1-4612-5154-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-17", 
    "datePublishedReg": "2018-08-17", 
    "description": "In this paper we consider the summation problem for two-dimensional trigonometrical integrals with a third-order polynomial phase. We find the sharp convergence exponent using the estimates for trigonometric integrals.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10476-018-0407-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136174", 
        "issn": [
          "0133-3852", 
          "1588-273X"
        ], 
        "name": "Analysis Mathematica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "keywords": [
      "trigonometric integrals", 
      "Lp-bounds", 
      "convergence exponent", 
      "polynomial phase", 
      "integrals", 
      "summation problem", 
      "problem", 
      "exponent", 
      "estimates", 
      "phase", 
      "paper", 
      "two-dimensional trigonometrical integrals", 
      "trigonometrical integrals", 
      "third-order polynomial phase", 
      "sharp convergence exponent"
    ], 
    "name": "On the Lp-Bound for Trigonometric Integrals", 
    "pagination": "153-176", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106195765"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10476-018-0407-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10476-018-0407-6", 
      "https://app.dimensions.ai/details/publication/pub.1106195765"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_758.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10476-018-0407-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10476-018-0407-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10476-018-0407-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10476-018-0407-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10476-018-0407-6'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      22 PREDICATES      43 URIs      32 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10476-018-0407-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndf1697a48b4f4dca82de603f2e5d75c3
4 schema:citation sg:pub.10.1007/978-1-4612-5154-5
5 sg:pub.10.1007/bf02567374
6 sg:pub.10.1134/s0001434610050093
7 schema:datePublished 2018-08-17
8 schema:datePublishedReg 2018-08-17
9 schema:description In this paper we consider the summation problem for two-dimensional trigonometrical integrals with a third-order polynomial phase. We find the sharp convergence exponent using the estimates for trigonometric integrals.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N092b93a8a25547cb9487e9ccf2c2642f
14 Na1230854ab284346ab99344ab85420e5
15 sg:journal.1136174
16 schema:keywords Lp-bounds
17 convergence exponent
18 estimates
19 exponent
20 integrals
21 paper
22 phase
23 polynomial phase
24 problem
25 sharp convergence exponent
26 summation problem
27 third-order polynomial phase
28 trigonometric integrals
29 trigonometrical integrals
30 two-dimensional trigonometrical integrals
31 schema:name On the Lp-Bound for Trigonometric Integrals
32 schema:pagination 153-176
33 schema:productId N028791603cd64320a49bc6b520f276ad
34 Nc6b7507506b941faa239fdb08d6627f7
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106195765
36 https://doi.org/10.1007/s10476-018-0407-6
37 schema:sdDatePublished 2021-11-01T18:31
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N3b99930e93d245a78ddb3a12f0fc47e3
40 schema:url https://doi.org/10.1007/s10476-018-0407-6
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N028791603cd64320a49bc6b520f276ad schema:name doi
45 schema:value 10.1007/s10476-018-0407-6
46 rdf:type schema:PropertyValue
47 N092b93a8a25547cb9487e9ccf2c2642f schema:issueNumber 1
48 rdf:type schema:PublicationIssue
49 N3b99930e93d245a78ddb3a12f0fc47e3 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Na1230854ab284346ab99344ab85420e5 schema:volumeNumber 45
52 rdf:type schema:PublicationVolume
53 Nc6b7507506b941faa239fdb08d6627f7 schema:name dimensions_id
54 schema:value pub.1106195765
55 rdf:type schema:PropertyValue
56 Ndf1697a48b4f4dca82de603f2e5d75c3 rdf:first sg:person.016267226060.10
57 rdf:rest rdf:nil
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136174 schema:issn 0133-3852
65 1588-273X
66 schema:name Analysis Mathematica
67 schema:publisher Springer Nature
68 rdf:type schema:Periodical
69 sg:person.016267226060.10 schema:affiliation grid-institutes:grid.77443.33
70 schema:familyName Safarov
71 schema:givenName A. R.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016267226060.10
73 rdf:type schema:Person
74 sg:pub.10.1007/978-1-4612-5154-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025802669
75 https://doi.org/10.1007/978-1-4612-5154-5
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02567374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047078521
78 https://doi.org/10.1007/bf02567374
79 rdf:type schema:CreativeWork
80 sg:pub.10.1134/s0001434610050093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025307836
81 https://doi.org/10.1134/s0001434610050093
82 rdf:type schema:CreativeWork
83 grid-institutes:grid.77443.33 schema:alternateName Department of Mechanics and Mathematics, Samarkand State University, 15 University Boulevard, 140104, Samarkand, Uzbekistan
84 schema:name Department of Mechanics and Mathematics, Samarkand State University, 15 University Boulevard, 140104, Samarkand, Uzbekistan
85 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...