On a System of Rational Chebyshev–Markov Fractions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

Y. Rouba, P. Patseika, K. Smatrytski

ABSTRACT

In the present paper an orthogonal system of Chebyshev–Markov rational fractions is considered. We introduce the corresponding Fourier series and find the Dirichlet integral. We obtain the decomposition of the function |x| into Fourier series with respect to the considered system in explicit form and an asymptotic estimate of the uniform approximation of this function by partial sums of the rational Fourier–Chebyshev series. More... »

PAGES

115-140

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10476-018-0110-7

DOI

http://dx.doi.org/10.1007/s10476-018-0110-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103472537


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yanka Kupala State University of Grodno", 
          "id": "https://www.grid.ac/institutes/grid.78041.3a", 
          "name": [
            "Yanka Kupala State University of Grodno, Grodno, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rouba", 
        "givenName": "Y.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yanka Kupala State University of Grodno", 
          "id": "https://www.grid.ac/institutes/grid.78041.3a", 
          "name": [
            "Yanka Kupala State University of Grodno, Grodno, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patseika", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yanka Kupala State University of Grodno", 
          "id": "https://www.grid.ac/institutes/grid.78041.3a", 
          "name": [
            "Yanka Kupala State University of Grodno, Grodno, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smatrytski", 
        "givenName": "K.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0377-0427(03)00497-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011174802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-1098(97)00201-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025753376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02401828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030525040", 
          "https://doi.org/10.1007/bf02401828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1216/rmj-1976-6-3-435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064427643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1307/mmj/1028999029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064975382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4099/jjm1924.2.0_129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092308333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511530050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098705553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10476-018-0109-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103474263", 
          "https://doi.org/10.1007/s10476-018-0109-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10476-018-0109-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103474263", 
          "https://doi.org/10.1007/s10476-018-0109-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "In the present paper an orthogonal system of Chebyshev\u2013Markov rational fractions is considered. We introduce the corresponding Fourier series and find the Dirichlet integral. We obtain the decomposition of the function |x| into Fourier series with respect to the considered system in explicit form and an asymptotic estimate of the uniform approximation of this function by partial sums of the rational Fourier\u2013Chebyshev series.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10476-018-0110-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136174", 
        "issn": [
          "0133-3852", 
          "1588-273X"
        ], 
        "name": "Analysis Mathematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "On a System of Rational Chebyshev\u2013Markov Fractions", 
    "pagination": "115-140", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c1e9513c08c43c234418fc73a09bd0776df791a2fc0067302cca4964d91f3d0d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10476-018-0110-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103472537"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10476-018-0110-7", 
      "https://app.dimensions.ai/details/publication/pub.1103472537"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10476-018-0110-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10476-018-0110-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10476-018-0110-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10476-018-0110-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10476-018-0110-7'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10476-018-0110-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3683b12874b0437fb6ca3036689de82b
4 schema:citation sg:pub.10.1007/bf02401828
5 sg:pub.10.1007/s10476-018-0109-0
6 https://doi.org/10.1016/s0005-1098(97)00201-x
7 https://doi.org/10.1016/s0377-0427(03)00497-7
8 https://doi.org/10.1017/cbo9780511530050
9 https://doi.org/10.1216/rmj-1976-6-3-435
10 https://doi.org/10.1307/mmj/1028999029
11 https://doi.org/10.4099/jjm1924.2.0_129
12 schema:datePublished 2018-03
13 schema:datePublishedReg 2018-03-01
14 schema:description In the present paper an orthogonal system of Chebyshev–Markov rational fractions is considered. We introduce the corresponding Fourier series and find the Dirichlet integral. We obtain the decomposition of the function |x| into Fourier series with respect to the considered system in explicit form and an asymptotic estimate of the uniform approximation of this function by partial sums of the rational Fourier–Chebyshev series.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N0f049e337b1a4711b72ddf6ef7eee594
19 N8a0d118e06a440f4b7eca82e8e4b21e9
20 sg:journal.1136174
21 schema:name On a System of Rational Chebyshev–Markov Fractions
22 schema:pagination 115-140
23 schema:productId N0eec29bb9026487193008ec497f0fae5
24 N5b8885dfdc0a4a60afeabc0107f9ba7c
25 N97773b53965c4878aec1bbdfd5a6f89e
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103472537
27 https://doi.org/10.1007/s10476-018-0110-7
28 schema:sdDatePublished 2019-04-10T21:00
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nc205e05c1f62410e9ff27a76dfc09486
31 schema:url https://link.springer.com/10.1007%2Fs10476-018-0110-7
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0eec29bb9026487193008ec497f0fae5 schema:name doi
36 schema:value 10.1007/s10476-018-0110-7
37 rdf:type schema:PropertyValue
38 N0f049e337b1a4711b72ddf6ef7eee594 schema:volumeNumber 44
39 rdf:type schema:PublicationVolume
40 N1307fb8842074a11a12554929a4d9fab rdf:first N4e5c4c61cb9140c0a15e27e9471f853d
41 rdf:rest N540ba5edeb8a48d2bf21c17956919026
42 N288899b39531432aa7c5219cd88715bb schema:affiliation https://www.grid.ac/institutes/grid.78041.3a
43 schema:familyName Rouba
44 schema:givenName Y.
45 rdf:type schema:Person
46 N3683b12874b0437fb6ca3036689de82b rdf:first N288899b39531432aa7c5219cd88715bb
47 rdf:rest N1307fb8842074a11a12554929a4d9fab
48 N4b9ed5e55f0a457e80ecaabb2743056d schema:affiliation https://www.grid.ac/institutes/grid.78041.3a
49 schema:familyName Smatrytski
50 schema:givenName K.
51 rdf:type schema:Person
52 N4e5c4c61cb9140c0a15e27e9471f853d schema:affiliation https://www.grid.ac/institutes/grid.78041.3a
53 schema:familyName Patseika
54 schema:givenName P.
55 rdf:type schema:Person
56 N540ba5edeb8a48d2bf21c17956919026 rdf:first N4b9ed5e55f0a457e80ecaabb2743056d
57 rdf:rest rdf:nil
58 N5b8885dfdc0a4a60afeabc0107f9ba7c schema:name readcube_id
59 schema:value c1e9513c08c43c234418fc73a09bd0776df791a2fc0067302cca4964d91f3d0d
60 rdf:type schema:PropertyValue
61 N8a0d118e06a440f4b7eca82e8e4b21e9 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 N97773b53965c4878aec1bbdfd5a6f89e schema:name dimensions_id
64 schema:value pub.1103472537
65 rdf:type schema:PropertyValue
66 Nc205e05c1f62410e9ff27a76dfc09486 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
72 schema:name Pure Mathematics
73 rdf:type schema:DefinedTerm
74 sg:journal.1136174 schema:issn 0133-3852
75 1588-273X
76 schema:name Analysis Mathematica
77 rdf:type schema:Periodical
78 sg:pub.10.1007/bf02401828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030525040
79 https://doi.org/10.1007/bf02401828
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/s10476-018-0109-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103474263
82 https://doi.org/10.1007/s10476-018-0109-0
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/s0005-1098(97)00201-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025753376
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/s0377-0427(03)00497-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011174802
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1017/cbo9780511530050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098705553
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1216/rmj-1976-6-3-435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064427643
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1307/mmj/1028999029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064975382
93 rdf:type schema:CreativeWork
94 https://doi.org/10.4099/jjm1924.2.0_129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092308333
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.78041.3a schema:alternateName Yanka Kupala State University of Grodno
97 schema:name Yanka Kupala State University of Grodno, Grodno, Belarus
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...