Analytic continuation of multiple polylogarithms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-11-13

AUTHORS

Jianqiang Zhao

ABSTRACT

The analytical continuation of generalized polylogarithms of several variables is studied in this paper. The theory of Chen’s iterated path integrals is used. The monodromy of the multiple logarithms is computed.

PAGES

301-323

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10476-007-0404-7

DOI

http://dx.doi.org/10.1007/s10476-007-0404-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017274856


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Eckerd College, 33711, St. Petersburg, Florida, USA", 
          "id": "http://www.grid.ac/institutes/grid.255423.7", 
          "name": [
            "Department of Mathematics, Eckerd College, 33711, St. Petersburg, Florida, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Jianqiang", 
        "id": "sg:person.016201535447.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016201535447.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-0-8176-4574-8_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015381878", 
          "https://doi.org/10.1007/978-0-8176-4574-8_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01453591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001432718", 
          "https://doi.org/10.1007/bf01453591"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-11-13", 
    "datePublishedReg": "2007-11-13", 
    "description": "The analytical continuation of generalized polylogarithms of several variables is studied in this paper. The theory of Chen\u2019s iterated path integrals is used. The monodromy of the multiple logarithms is computed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10476-007-0404-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136174", 
        "issn": [
          "0133-3852", 
          "1588-273X"
        ], 
        "name": "Analysis Mathematica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "keywords": [
      "multiple polylogarithms", 
      "path integral", 
      "analytic continuation", 
      "analytical continuation", 
      "polylogarithms", 
      "monodromy", 
      "integrals", 
      "theory", 
      "continuation", 
      "Chen", 
      "variables", 
      "logarithm", 
      "paper", 
      "multiple logarithms"
    ], 
    "name": "Analytic continuation of multiple polylogarithms", 
    "pagination": "301-323", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017274856"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10476-007-0404-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10476-007-0404-7", 
      "https://app.dimensions.ai/details/publication/pub.1017274856"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_438.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10476-007-0404-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10476-007-0404-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10476-007-0404-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10476-007-0404-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10476-007-0404-7'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      22 PREDICATES      41 URIs      31 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10476-007-0404-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3878a6aa06684d1db887eb53856e412c
4 schema:citation sg:pub.10.1007/978-0-8176-4574-8_6
5 sg:pub.10.1007/bf01453591
6 schema:datePublished 2007-11-13
7 schema:datePublishedReg 2007-11-13
8 schema:description The analytical continuation of generalized polylogarithms of several variables is studied in this paper. The theory of Chen’s iterated path integrals is used. The monodromy of the multiple logarithms is computed.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf Nbc4b7872a4c94dca9a910090aca7d1c5
13 Nec4f5479a7b547b096371ce1b9de26c8
14 sg:journal.1136174
15 schema:keywords Chen
16 analytic continuation
17 analytical continuation
18 continuation
19 integrals
20 logarithm
21 monodromy
22 multiple logarithms
23 multiple polylogarithms
24 paper
25 path integral
26 polylogarithms
27 theory
28 variables
29 schema:name Analytic continuation of multiple polylogarithms
30 schema:pagination 301-323
31 schema:productId N35545baffce34644b1883f33e273e3a3
32 N8e4b5015a2ce4aed805395f3d7a91699
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017274856
34 https://doi.org/10.1007/s10476-007-0404-7
35 schema:sdDatePublished 2021-12-01T19:19
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N12ea9249ccf04bb39cd41cf112e18d39
38 schema:url https://doi.org/10.1007/s10476-007-0404-7
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N12ea9249ccf04bb39cd41cf112e18d39 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N35545baffce34644b1883f33e273e3a3 schema:name doi
45 schema:value 10.1007/s10476-007-0404-7
46 rdf:type schema:PropertyValue
47 N3878a6aa06684d1db887eb53856e412c rdf:first sg:person.016201535447.76
48 rdf:rest rdf:nil
49 N8e4b5015a2ce4aed805395f3d7a91699 schema:name dimensions_id
50 schema:value pub.1017274856
51 rdf:type schema:PropertyValue
52 Nbc4b7872a4c94dca9a910090aca7d1c5 schema:volumeNumber 33
53 rdf:type schema:PublicationVolume
54 Nec4f5479a7b547b096371ce1b9de26c8 schema:issueNumber 4
55 rdf:type schema:PublicationIssue
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1136174 schema:issn 0133-3852
63 1588-273X
64 schema:name Analysis Mathematica
65 schema:publisher Springer Nature
66 rdf:type schema:Periodical
67 sg:person.016201535447.76 schema:affiliation grid-institutes:grid.255423.7
68 schema:familyName Zhao
69 schema:givenName Jianqiang
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016201535447.76
71 rdf:type schema:Person
72 sg:pub.10.1007/978-0-8176-4574-8_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015381878
73 https://doi.org/10.1007/978-0-8176-4574-8_6
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01453591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001432718
76 https://doi.org/10.1007/bf01453591
77 rdf:type schema:CreativeWork
78 grid-institutes:grid.255423.7 schema:alternateName Department of Mathematics, Eckerd College, 33711, St. Petersburg, Florida, USA
79 schema:name Department of Mathematics, Eckerd College, 33711, St. Petersburg, Florida, USA
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...