.
.
.
.
.
.
.
.
"Osipov" .
.
.
.
.
.
_:N50c075524c9e4defacd86a71101a0d99 .
.
.
_:N96c6e4f2449142719d1f0f1e9bf21355 .
"Ural Federal University" .
.
.
.
.
_:N9e908ada9a5748d7a3b96389a7a49de6 .
.
.
_:N6b71b984cbe74fd18f8aac5c5e7eac73 .
.
.
_:N47793e20bfe244e699a5b5b4e680e026 .
.
.
.
_:N47793e20bfe244e699a5b5b4e680e026 "doi" .
.
.
.
_:N99f69f779b594e578c76a435a746194f .
.
"Information and Computing Sciences" .
"1588-2632" .
"true"^^ .
.
.
.
.
"For a Tychonoff space X, we denote by Cp(X) the space of all real-valued continuous functions on X with the topology of pointwise convergence. In this paper we prove that: If every finite power of X is Lindel\u00F6f then Cp(X) is strongly sequentially separable iff X is \u03B3-set.B\u03B1(X) (= functions of Baire class \u03B1 (1<\u03B1\u2264\u03C91) on a Tychonoff space X with the pointwise topology) is sequentially separable iff there exists a Baire isomorphism class \u03B1 from a space X onto a \u03C3-set.B\u03B1(X) is strongly sequentially separable iff iw(X)=\u21350 and X is a Z\u03B1-cover \u03B3-set for 0<\u03B1\u2264\u03C91.There is a consistent example of a set of reals X such that Cp(X) is strongly sequentially separable but B1(X) is not strongly sequentially separable.B(X) is sequentially separable but is not strongly sequentially separable for a b-Sierpi\u0144ski set X. If every finite power of X is Lindel\u00F6f then Cp(X) is strongly sequentially separable iff X is \u03B3-set. B\u03B1(X) (= functions of Baire class \u03B1 (1<\u03B1\u2264\u03C91) on a Tychonoff space X with the pointwise topology) is sequentially separable iff there exists a Baire isomorphism class \u03B1 from a space X onto a \u03C3-set. B\u03B1(X) is strongly sequentially separable iff iw(X)=\u21350 and X is a Z\u03B1-cover \u03B3-set for 0<\u03B1\u2264\u03C91. There is a consistent example of a set of reals X such that Cp(X) is strongly sequentially separable but B1(X) is not strongly sequentially separable. B(X) is sequentially separable but is not strongly sequentially separable for a b-Sierpi\u0144ski set X." .
"en" .
_:N50c075524c9e4defacd86a71101a0d99 "811846ae10a31c2e2a8a3c19bfaa665ed5534b62ac328c7bfd95fee83ce23e77" .
.
_:N96c6e4f2449142719d1f0f1e9bf21355 "dimensions_id" .
_:N9e908ada9a5748d7a3b96389a7a49de6 .
.
.
_:N00a371f148f74e6dacaaf769c0965e42 .
"362-377" .
.
.
_:N6b71b984cbe74fd18f8aac5c5e7eac73 "154" .
.
_:N47793e20bfe244e699a5b5b4e680e026 "10.1007/s10474-018-0800-4" .
.
.
"2018-04" .
.
"Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, Yekaterinburg, Russia" .
_:N99f69f779b594e578c76a435a746194f .
.
"A. V." .
"research_article" .
_:N00a371f148f74e6dacaaf769c0965e42 "Springer Nature - SN SciGraph project" .
.
.
.
"articles" .
.
.
.
.
.
.
.
.
.
_:N96c6e4f2449142719d1f0f1e9bf21355 .
_:N6b71b984cbe74fd18f8aac5c5e7eac73 .
.
_:N96c6e4f2449142719d1f0f1e9bf21355 "pub.1101179082" .
.
.
"0236-5294" .
"2018-04-01" .
.
.
.
.
.
.