On some properties of the space of upper semicontinuous functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04

AUTHORS

A. V. Osipov, E. G. Pytkeev

ABSTRACT

For a Tychonoff space X, we will denote by USCp(X) (B1(X)) the set of all real-valued upper semicontinuous functions (the set of all Baire functions of class 1) defined on X endowed with the pointwise convergence topology. In this paper we describe a class of Tychonoff spaces X for which the space USCp(X) is sequentially separable. Unexpectedly, it turns out that this class coincides with the class of spaces for which a stronger form of the sequential separability for the space B1(X) holds. More... »

PAGES

459-464

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10474-018-00906-1

DOI

http://dx.doi.org/10.1007/s10474-018-00906-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111057700


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ural State University of Economics", 
          "id": "https://www.grid.ac/institutes/grid.410629.8", 
          "name": [
            "Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, 620219, Ekaterinburg, Russia", 
            "Ural State University of Economics, 620144, Ekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osipov", 
        "givenName": "A. V.", 
        "id": "sg:person.014161675123.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014161675123.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Federal University", 
          "id": "https://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, 620219, Ekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pytkeev", 
        "givenName": "E. G.", 
        "id": "sg:person.011550015565.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011550015565.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9939-1974-0328855-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022476658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11006-005-0164-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044963231", 
          "https://doi.org/10.1007/s11006-005-0164-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11006-005-0164-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044963231", 
          "https://doi.org/10.1007/s11006-005-0164-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.topol.2017.02.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083828952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10474-018-0800-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101179082", 
          "https://doi.org/10.1007/s10474-018-0800-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10474-018-0800-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101179082", 
          "https://doi.org/10.1007/s10474-018-0800-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10474-018-0800-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101179082", 
          "https://doi.org/10.1007/s10474-018-0800-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00029890.1972.11993122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103218168"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "For a Tychonoff space X, we will denote by USCp(X) (B1(X)) the set of all real-valued upper semicontinuous functions (the set of all Baire functions of class 1) defined on X endowed with the pointwise convergence topology. In this paper we describe a class of Tychonoff spaces X for which the space USCp(X) is sequentially separable. Unexpectedly, it turns out that this class coincides with the class of spaces for which a stronger form of the sequential separability for the space B1(X) holds.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10474-018-00906-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136684", 
        "issn": [
          "0236-5294", 
          "1588-2632"
        ], 
        "name": "Acta Mathematica Hungarica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "157"
      }
    ], 
    "name": "On some properties of the space of upper semicontinuous functions", 
    "pagination": "459-464", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "084b1b75909d5c6155ac3ee566c944c111f469a69fa1412d243f9b0b63d49e36"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10474-018-00906-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111057700"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10474-018-00906-1", 
      "https://app.dimensions.ai/details/publication/pub.1111057700"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78968_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10474-018-00906-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10474-018-00906-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10474-018-00906-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10474-018-00906-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10474-018-00906-1'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10474-018-00906-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2e9bd3a4f73c44f4a3566d43ddb4d608
4 schema:citation sg:pub.10.1007/s10474-018-0800-4
5 sg:pub.10.1007/s11006-005-0164-2
6 https://doi.org/10.1016/j.topol.2017.02.059
7 https://doi.org/10.1080/00029890.1972.11993122
8 https://doi.org/10.1090/s0002-9939-1974-0328855-4
9 schema:datePublished 2019-04
10 schema:datePublishedReg 2019-04-01
11 schema:description For a Tychonoff space X, we will denote by USCp(X) (B1(X)) the set of all real-valued upper semicontinuous functions (the set of all Baire functions of class 1) defined on X endowed with the pointwise convergence topology. In this paper we describe a class of Tychonoff spaces X for which the space USCp(X) is sequentially separable. Unexpectedly, it turns out that this class coincides with the class of spaces for which a stronger form of the sequential separability for the space B1(X) holds.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N021041552cbb4e79b55310f88a083ab9
16 N06faa6ff490a44f6bc6321814d0523d8
17 sg:journal.1136684
18 schema:name On some properties of the space of upper semicontinuous functions
19 schema:pagination 459-464
20 schema:productId N13c212dde6b24af3800ab167ff71607b
21 N2bf174868ff34ba3a4e9a7a074fff39e
22 N30c4eed90fe34753881f2ea4f8447582
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111057700
24 https://doi.org/10.1007/s10474-018-00906-1
25 schema:sdDatePublished 2019-04-11T13:20
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N06e490a77fb84b81b8a47501051e52c9
28 schema:url https://link.springer.com/10.1007%2Fs10474-018-00906-1
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N021041552cbb4e79b55310f88a083ab9 schema:volumeNumber 157
33 rdf:type schema:PublicationVolume
34 N06e490a77fb84b81b8a47501051e52c9 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N06faa6ff490a44f6bc6321814d0523d8 schema:issueNumber 2
37 rdf:type schema:PublicationIssue
38 N13c212dde6b24af3800ab167ff71607b schema:name doi
39 schema:value 10.1007/s10474-018-00906-1
40 rdf:type schema:PropertyValue
41 N2bf174868ff34ba3a4e9a7a074fff39e schema:name readcube_id
42 schema:value 084b1b75909d5c6155ac3ee566c944c111f469a69fa1412d243f9b0b63d49e36
43 rdf:type schema:PropertyValue
44 N2e9bd3a4f73c44f4a3566d43ddb4d608 rdf:first sg:person.014161675123.06
45 rdf:rest N7b886fd4024f49bdbe8de854096d8f07
46 N30c4eed90fe34753881f2ea4f8447582 schema:name dimensions_id
47 schema:value pub.1111057700
48 rdf:type schema:PropertyValue
49 N7b886fd4024f49bdbe8de854096d8f07 rdf:first sg:person.011550015565.42
50 rdf:rest rdf:nil
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
55 schema:name Pure Mathematics
56 rdf:type schema:DefinedTerm
57 sg:journal.1136684 schema:issn 0236-5294
58 1588-2632
59 schema:name Acta Mathematica Hungarica
60 rdf:type schema:Periodical
61 sg:person.011550015565.42 schema:affiliation https://www.grid.ac/institutes/grid.412761.7
62 schema:familyName Pytkeev
63 schema:givenName E. G.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011550015565.42
65 rdf:type schema:Person
66 sg:person.014161675123.06 schema:affiliation https://www.grid.ac/institutes/grid.410629.8
67 schema:familyName Osipov
68 schema:givenName A. V.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014161675123.06
70 rdf:type schema:Person
71 sg:pub.10.1007/s10474-018-0800-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101179082
72 https://doi.org/10.1007/s10474-018-0800-4
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/s11006-005-0164-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044963231
75 https://doi.org/10.1007/s11006-005-0164-2
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/j.topol.2017.02.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083828952
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1080/00029890.1972.11993122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103218168
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1090/s0002-9939-1974-0328855-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022476658
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.410629.8 schema:alternateName Ural State University of Economics
84 schema:name Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, 620219, Ekaterinburg, Russia
85 Ural State University of Economics, 620144, Ekaterinburg, Russia
86 rdf:type schema:Organization
87 https://www.grid.ac/institutes/grid.412761.7 schema:alternateName Ural Federal University
88 schema:name Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, 620219, Ekaterinburg, Russia
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...