On multiplicatively independent bases in cyclotomic number fields View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-06

AUTHORS

M. G. Madritsch, V. Ziegler

ABSTRACT

Recently the authors [12] showed that the algebraic integers of the form -m+ζk are bases of a canonical number system of Z[ζk] provided m≧ϕ(k)+1, where ζk denotes a k-th primitive root of unity and ϕ is Euler’s totient function. In this paper we are interested in the questions whether two bases -m+ζk and -n+ζk are multiplicatively independent. We show the multiplicative independence in case that 0 < |m−n| < 106 and |m|, |n| > 1. More... »

PAGES

224-239

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10474-015-0500-2

DOI

http://dx.doi.org/10.1007/s10474-015-0500-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033540398


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut \u00c9lie Cartan de Lorraine", 
          "id": "https://www.grid.ac/institutes/grid.462063.5", 
          "name": [
            "Institut Elie Cartan de Lorraine, Universit\u00e9 de Lorraine, UMR 7502, F-54506, Vandoeuvre-l\u00e8s-Nancy, France", 
            "Institut Elie Cartan de Lorraine, CNRS, UMR 7502, F-54506, Vandoeuvre-l\u00e8s-Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Madritsch", 
        "givenName": "M. G.", 
        "id": "sg:person.014037344412.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014037344412.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johann Radon Institute for Computational and Applied Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.475782.b", 
          "name": [
            "Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstr. 69, A-4040, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ziegler", 
        "givenName": "V.", 
        "id": "sg:person.010167602321.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010167602321.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0304-3975(01)00103-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024599009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21690-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024714410", 
          "https://doi.org/10.1007/978-0-387-21690-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21690-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024714410", 
          "https://doi.org/10.1007/978-0-387-21690-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(81)90262-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035535439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01895142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050389700", 
          "https://doi.org/10.1007/bf01895142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01895142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050389700", 
          "https://doi.org/10.1007/bf01895142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01904880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050650815", 
          "https://doi.org/10.1007/bf01904880"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06", 
    "datePublishedReg": "2015-06-01", 
    "description": "Recently the authors [12] showed that the algebraic integers of the form -m+\u03b6k are bases of a canonical number system of Z[\u03b6k] provided m\u2267\u03d5(k)+1, where \u03b6k denotes a k-th primitive root of unity and \u03d5 is Euler\u2019s totient function. In this paper we are interested in the questions whether two bases -m+\u03b6k and -n+\u03b6k are multiplicatively independent. We show the multiplicative independence in case that 0 < |m\u2212n| < 106 and |m|, |n| > 1.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10474-015-0500-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6208438", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136684", 
        "issn": [
          "0236-5294", 
          "1588-2632"
        ], 
        "name": "Acta Mathematica Hungarica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "146"
      }
    ], 
    "name": "On multiplicatively independent bases in cyclotomic number fields", 
    "pagination": "224-239", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9fc70761e5522f9f4b6dd07935d4fdf7e38fafe7db35fc0aca5fbbacd828dca3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10474-015-0500-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033540398"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10474-015-0500-2", 
      "https://app.dimensions.ai/details/publication/pub.1033540398"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10474-015-0500-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10474-015-0500-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10474-015-0500-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10474-015-0500-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10474-015-0500-2'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10474-015-0500-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3d7102c055104531a2555ed40e980353
4 schema:citation sg:pub.10.1007/978-0-387-21690-4
5 sg:pub.10.1007/bf01895142
6 sg:pub.10.1007/bf01904880
7 https://doi.org/10.1016/0022-247x(81)90262-6
8 https://doi.org/10.1016/s0304-3975(01)00103-7
9 schema:datePublished 2015-06
10 schema:datePublishedReg 2015-06-01
11 schema:description Recently the authors [12] showed that the algebraic integers of the form -m+ζk are bases of a canonical number system of Z[ζk] provided m≧ϕ(k)+1, where ζk denotes a k-th primitive root of unity and ϕ is Euler’s totient function. In this paper we are interested in the questions whether two bases -m+ζk and -n+ζk are multiplicatively independent. We show the multiplicative independence in case that 0 < |m−n| < 106 and |m|, |n| > 1.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N283120f423cb403495c118994271c96e
16 N57cdb9ed4b344ab58ff2e4f331a25799
17 sg:journal.1136684
18 schema:name On multiplicatively independent bases in cyclotomic number fields
19 schema:pagination 224-239
20 schema:productId N09c7969da9ba4949b4aab9f92b4541bf
21 N65b995ebc3284349990e6aa35887ffa2
22 Nd262e130699b42cea08b4725683ceae9
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033540398
24 https://doi.org/10.1007/s10474-015-0500-2
25 schema:sdDatePublished 2019-04-11T02:01
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N6b85ef48061b475c9b667576a9e662de
28 schema:url http://link.springer.com/10.1007%2Fs10474-015-0500-2
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N09c7969da9ba4949b4aab9f92b4541bf schema:name dimensions_id
33 schema:value pub.1033540398
34 rdf:type schema:PropertyValue
35 N283120f423cb403495c118994271c96e schema:volumeNumber 146
36 rdf:type schema:PublicationVolume
37 N3d7102c055104531a2555ed40e980353 rdf:first sg:person.014037344412.69
38 rdf:rest N426fbc64fc114642a071b1fb5256ba5f
39 N426fbc64fc114642a071b1fb5256ba5f rdf:first sg:person.010167602321.26
40 rdf:rest rdf:nil
41 N57cdb9ed4b344ab58ff2e4f331a25799 schema:issueNumber 1
42 rdf:type schema:PublicationIssue
43 N65b995ebc3284349990e6aa35887ffa2 schema:name doi
44 schema:value 10.1007/s10474-015-0500-2
45 rdf:type schema:PropertyValue
46 N6b85ef48061b475c9b667576a9e662de schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Nd262e130699b42cea08b4725683ceae9 schema:name readcube_id
49 schema:value 9fc70761e5522f9f4b6dd07935d4fdf7e38fafe7db35fc0aca5fbbacd828dca3
50 rdf:type schema:PropertyValue
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
55 schema:name Pure Mathematics
56 rdf:type schema:DefinedTerm
57 sg:grant.6208438 http://pending.schema.org/fundedItem sg:pub.10.1007/s10474-015-0500-2
58 rdf:type schema:MonetaryGrant
59 sg:journal.1136684 schema:issn 0236-5294
60 1588-2632
61 schema:name Acta Mathematica Hungarica
62 rdf:type schema:Periodical
63 sg:person.010167602321.26 schema:affiliation https://www.grid.ac/institutes/grid.475782.b
64 schema:familyName Ziegler
65 schema:givenName V.
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010167602321.26
67 rdf:type schema:Person
68 sg:person.014037344412.69 schema:affiliation https://www.grid.ac/institutes/grid.462063.5
69 schema:familyName Madritsch
70 schema:givenName M. G.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014037344412.69
72 rdf:type schema:Person
73 sg:pub.10.1007/978-0-387-21690-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024714410
74 https://doi.org/10.1007/978-0-387-21690-4
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01895142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050389700
77 https://doi.org/10.1007/bf01895142
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01904880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050650815
80 https://doi.org/10.1007/bf01904880
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/0022-247x(81)90262-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035535439
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/s0304-3975(01)00103-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024599009
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.462063.5 schema:alternateName Institut Élie Cartan de Lorraine
87 schema:name Institut Elie Cartan de Lorraine, CNRS, UMR 7502, F-54506, Vandoeuvre-lès-Nancy, France
88 Institut Elie Cartan de Lorraine, Université de Lorraine, UMR 7502, F-54506, Vandoeuvre-lès-Nancy, France
89 rdf:type schema:Organization
90 https://www.grid.ac/institutes/grid.475782.b schema:alternateName Johann Radon Institute for Computational and Applied Mathematics
91 schema:name Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstr. 69, A-4040, Linz, Austria
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...