Periodicity of Balancing Numbers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-08

AUTHORS

G. K. Panda, S. S. Rout

ABSTRACT

The balancing numbers originally introduced by Behera and Panda [2] as solutions of a Diophantine equation on triangular numbers possess many interesting properties. Many of these properties are comparable to certain properties of Fibonacci numbers, while some others are more interesting. Wall [14] studied the periodicity of Fibonacci numbers modulo arbitrary natural numbers. The periodicity of balancing numbers modulo primes and modulo terms of certain sequences exhibits beautiful results, again, some of them are identical with corresponding results of Fibonacci numbers, while some others are more fascinating. An important observation concerning the periodicity of balancing numbers is that, the period of this sequence coincides with the modulus of congruence if the modulus is any power of 2. There are three known primes for which the period of the sequence of balancing numbers modulo each prime is equal to the period modulo its square, while for the Fibonacci sequence, till date no such prime is available. More... »

PAGES

274-286

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10474-014-0427-z

DOI

http://dx.doi.org/10.1007/s10474-014-0427-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043014827


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Technology Rourkela", 
          "id": "https://www.grid.ac/institutes/grid.444703.0", 
          "name": [
            "Department of Mathematics, National Institute of Technology Rourkela, 769 008, Rourkela, Odisha, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panda", 
        "givenName": "G. K.", 
        "id": "sg:person.010106716410.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010106716410.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Technology Rourkela", 
          "id": "https://www.grid.ac/institutes/grid.444703.0", 
          "name": [
            "Department of Mathematics, National Institute of Technology Rourkela, 769 008, Rourkela, Odisha, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rout", 
        "givenName": "S. S.", 
        "id": "sg:person.014032745645.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032745645.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0019-3577(09)80005-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025507770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/ijmms.2005.1189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033011396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2370976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069897704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2374733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069901074"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-08", 
    "datePublishedReg": "2014-08-01", 
    "description": "The balancing numbers originally introduced by Behera and Panda [2] as solutions of a Diophantine equation on triangular numbers possess many interesting properties. Many of these properties are comparable to certain properties of Fibonacci numbers, while some others are more interesting. Wall [14] studied the periodicity of Fibonacci numbers modulo arbitrary natural numbers. The periodicity of balancing numbers modulo primes and modulo terms of certain sequences exhibits beautiful results, again, some of them are identical with corresponding results of Fibonacci numbers, while some others are more fascinating. An important observation concerning the periodicity of balancing numbers is that, the period of this sequence coincides with the modulus of congruence if the modulus is any power of 2. There are three known primes for which the period of the sequence of balancing numbers modulo each prime is equal to the period modulo its square, while for the Fibonacci sequence, till date no such prime is available.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10474-014-0427-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136684", 
        "issn": [
          "0236-5294", 
          "1588-2632"
        ], 
        "name": "Acta Mathematica Hungarica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "143"
      }
    ], 
    "name": "Periodicity of Balancing Numbers", 
    "pagination": "274-286", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cce5039f26860d01abb8ac6553089dffa3e179b406cda601d44414a956d940aa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10474-014-0427-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043014827"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10474-014-0427-z", 
      "https://app.dimensions.ai/details/publication/pub.1043014827"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10474-014-0427-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10474-014-0427-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10474-014-0427-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10474-014-0427-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10474-014-0427-z'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10474-014-0427-z schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N52a746832ddf4096a3b075fa99aaf350
4 schema:citation https://doi.org/10.1016/s0019-3577(09)80005-0
5 https://doi.org/10.1155/ijmms.2005.1189
6 https://doi.org/10.2307/2370976
7 https://doi.org/10.2307/2374733
8 schema:datePublished 2014-08
9 schema:datePublishedReg 2014-08-01
10 schema:description The balancing numbers originally introduced by Behera and Panda [2] as solutions of a Diophantine equation on triangular numbers possess many interesting properties. Many of these properties are comparable to certain properties of Fibonacci numbers, while some others are more interesting. Wall [14] studied the periodicity of Fibonacci numbers modulo arbitrary natural numbers. The periodicity of balancing numbers modulo primes and modulo terms of certain sequences exhibits beautiful results, again, some of them are identical with corresponding results of Fibonacci numbers, while some others are more fascinating. An important observation concerning the periodicity of balancing numbers is that, the period of this sequence coincides with the modulus of congruence if the modulus is any power of 2. There are three known primes for which the period of the sequence of balancing numbers modulo each prime is equal to the period modulo its square, while for the Fibonacci sequence, till date no such prime is available.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N880a2a602392481dae4c0bb9511ecf8a
15 Nec541231117446e59e4b5768c7804bc0
16 sg:journal.1136684
17 schema:name Periodicity of Balancing Numbers
18 schema:pagination 274-286
19 schema:productId N50fc7494888d4c6c96cc1acd9855b464
20 N667e36b64a3c4a4ea8af1279045dd13c
21 N9244fa8c035740dcb37e4af12bdd93b4
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043014827
23 https://doi.org/10.1007/s10474-014-0427-z
24 schema:sdDatePublished 2019-04-10T19:58
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nfe3af939b6e749d483e879ab6ed4e8b1
27 schema:url http://link.springer.com/10.1007%2Fs10474-014-0427-z
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N40a333005a3c4c4a8c973ba7a6e392f3 rdf:first sg:person.014032745645.59
32 rdf:rest rdf:nil
33 N50fc7494888d4c6c96cc1acd9855b464 schema:name dimensions_id
34 schema:value pub.1043014827
35 rdf:type schema:PropertyValue
36 N52a746832ddf4096a3b075fa99aaf350 rdf:first sg:person.010106716410.51
37 rdf:rest N40a333005a3c4c4a8c973ba7a6e392f3
38 N667e36b64a3c4a4ea8af1279045dd13c schema:name readcube_id
39 schema:value cce5039f26860d01abb8ac6553089dffa3e179b406cda601d44414a956d940aa
40 rdf:type schema:PropertyValue
41 N880a2a602392481dae4c0bb9511ecf8a schema:volumeNumber 143
42 rdf:type schema:PublicationVolume
43 N9244fa8c035740dcb37e4af12bdd93b4 schema:name doi
44 schema:value 10.1007/s10474-014-0427-z
45 rdf:type schema:PropertyValue
46 Nec541231117446e59e4b5768c7804bc0 schema:issueNumber 2
47 rdf:type schema:PublicationIssue
48 Nfe3af939b6e749d483e879ab6ed4e8b1 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1136684 schema:issn 0236-5294
57 1588-2632
58 schema:name Acta Mathematica Hungarica
59 rdf:type schema:Periodical
60 sg:person.010106716410.51 schema:affiliation https://www.grid.ac/institutes/grid.444703.0
61 schema:familyName Panda
62 schema:givenName G. K.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010106716410.51
64 rdf:type schema:Person
65 sg:person.014032745645.59 schema:affiliation https://www.grid.ac/institutes/grid.444703.0
66 schema:familyName Rout
67 schema:givenName S. S.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032745645.59
69 rdf:type schema:Person
70 https://doi.org/10.1016/s0019-3577(09)80005-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025507770
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1155/ijmms.2005.1189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033011396
73 rdf:type schema:CreativeWork
74 https://doi.org/10.2307/2370976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069897704
75 rdf:type schema:CreativeWork
76 https://doi.org/10.2307/2374733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069901074
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.444703.0 schema:alternateName National Institute of Technology Rourkela
79 schema:name Department of Mathematics, National Institute of Technology Rourkela, 769 008, Rourkela, Odisha, India
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...