Periodicity of Balancing Numbers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-08

AUTHORS

G. K. Panda, S. S. Rout

ABSTRACT

The balancing numbers originally introduced by Behera and Panda [2] as solutions of a Diophantine equation on triangular numbers possess many interesting properties. Many of these properties are comparable to certain properties of Fibonacci numbers, while some others are more interesting. Wall [14] studied the periodicity of Fibonacci numbers modulo arbitrary natural numbers. The periodicity of balancing numbers modulo primes and modulo terms of certain sequences exhibits beautiful results, again, some of them are identical with corresponding results of Fibonacci numbers, while some others are more fascinating. An important observation concerning the periodicity of balancing numbers is that, the period of this sequence coincides with the modulus of congruence if the modulus is any power of 2. There are three known primes for which the period of the sequence of balancing numbers modulo each prime is equal to the period modulo its square, while for the Fibonacci sequence, till date no such prime is available. More... »

PAGES

274-286

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10474-014-0427-z

DOI

http://dx.doi.org/10.1007/s10474-014-0427-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043014827


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Technology Rourkela", 
          "id": "https://www.grid.ac/institutes/grid.444703.0", 
          "name": [
            "Department of Mathematics, National Institute of Technology Rourkela, 769 008, Rourkela, Odisha, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panda", 
        "givenName": "G. K.", 
        "id": "sg:person.010106716410.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010106716410.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Technology Rourkela", 
          "id": "https://www.grid.ac/institutes/grid.444703.0", 
          "name": [
            "Department of Mathematics, National Institute of Technology Rourkela, 769 008, Rourkela, Odisha, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rout", 
        "givenName": "S. S.", 
        "id": "sg:person.014032745645.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032745645.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0019-3577(09)80005-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025507770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/ijmms.2005.1189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033011396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2370976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069897704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2374733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069901074"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-08", 
    "datePublishedReg": "2014-08-01", 
    "description": "The balancing numbers originally introduced by Behera and Panda [2] as solutions of a Diophantine equation on triangular numbers possess many interesting properties. Many of these properties are comparable to certain properties of Fibonacci numbers, while some others are more interesting. Wall [14] studied the periodicity of Fibonacci numbers modulo arbitrary natural numbers. The periodicity of balancing numbers modulo primes and modulo terms of certain sequences exhibits beautiful results, again, some of them are identical with corresponding results of Fibonacci numbers, while some others are more fascinating. An important observation concerning the periodicity of balancing numbers is that, the period of this sequence coincides with the modulus of congruence if the modulus is any power of 2. There are three known primes for which the period of the sequence of balancing numbers modulo each prime is equal to the period modulo its square, while for the Fibonacci sequence, till date no such prime is available.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10474-014-0427-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136684", 
        "issn": [
          "0236-5294", 
          "1588-2632"
        ], 
        "name": "Acta Mathematica Hungarica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "143"
      }
    ], 
    "name": "Periodicity of Balancing Numbers", 
    "pagination": "274-286", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cce5039f26860d01abb8ac6553089dffa3e179b406cda601d44414a956d940aa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10474-014-0427-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043014827"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10474-014-0427-z", 
      "https://app.dimensions.ai/details/publication/pub.1043014827"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10474-014-0427-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10474-014-0427-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10474-014-0427-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10474-014-0427-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10474-014-0427-z'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10474-014-0427-z schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb8f650eea7e0463a892a22e1eaeeba3d
4 schema:citation https://doi.org/10.1016/s0019-3577(09)80005-0
5 https://doi.org/10.1155/ijmms.2005.1189
6 https://doi.org/10.2307/2370976
7 https://doi.org/10.2307/2374733
8 schema:datePublished 2014-08
9 schema:datePublishedReg 2014-08-01
10 schema:description The balancing numbers originally introduced by Behera and Panda [2] as solutions of a Diophantine equation on triangular numbers possess many interesting properties. Many of these properties are comparable to certain properties of Fibonacci numbers, while some others are more interesting. Wall [14] studied the periodicity of Fibonacci numbers modulo arbitrary natural numbers. The periodicity of balancing numbers modulo primes and modulo terms of certain sequences exhibits beautiful results, again, some of them are identical with corresponding results of Fibonacci numbers, while some others are more fascinating. An important observation concerning the periodicity of balancing numbers is that, the period of this sequence coincides with the modulus of congruence if the modulus is any power of 2. There are three known primes for which the period of the sequence of balancing numbers modulo each prime is equal to the period modulo its square, while for the Fibonacci sequence, till date no such prime is available.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N0283b17fd6674522a74296e493f400c1
15 N7f6d93d56e5b42029fc0c665f70e4c34
16 sg:journal.1136684
17 schema:name Periodicity of Balancing Numbers
18 schema:pagination 274-286
19 schema:productId N163a52ee14d84a069753dbd28c84c608
20 N7b8854d7bc844a7eb5d8d415e31dfb0e
21 Nb0cdb66c77574735968eae68be2f1637
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043014827
23 https://doi.org/10.1007/s10474-014-0427-z
24 schema:sdDatePublished 2019-04-10T19:58
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N11c990438f9743b287a71537a0944408
27 schema:url http://link.springer.com/10.1007%2Fs10474-014-0427-z
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N0283b17fd6674522a74296e493f400c1 schema:volumeNumber 143
32 rdf:type schema:PublicationVolume
33 N11c990438f9743b287a71537a0944408 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N163a52ee14d84a069753dbd28c84c608 schema:name doi
36 schema:value 10.1007/s10474-014-0427-z
37 rdf:type schema:PropertyValue
38 N7b8854d7bc844a7eb5d8d415e31dfb0e schema:name dimensions_id
39 schema:value pub.1043014827
40 rdf:type schema:PropertyValue
41 N7f6d93d56e5b42029fc0c665f70e4c34 schema:issueNumber 2
42 rdf:type schema:PublicationIssue
43 Nb0cdb66c77574735968eae68be2f1637 schema:name readcube_id
44 schema:value cce5039f26860d01abb8ac6553089dffa3e179b406cda601d44414a956d940aa
45 rdf:type schema:PropertyValue
46 Nb8f650eea7e0463a892a22e1eaeeba3d rdf:first sg:person.010106716410.51
47 rdf:rest Ne403f38fd5864da99cd9eb1374befb7e
48 Ne403f38fd5864da99cd9eb1374befb7e rdf:first sg:person.014032745645.59
49 rdf:rest rdf:nil
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1136684 schema:issn 0236-5294
57 1588-2632
58 schema:name Acta Mathematica Hungarica
59 rdf:type schema:Periodical
60 sg:person.010106716410.51 schema:affiliation https://www.grid.ac/institutes/grid.444703.0
61 schema:familyName Panda
62 schema:givenName G. K.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010106716410.51
64 rdf:type schema:Person
65 sg:person.014032745645.59 schema:affiliation https://www.grid.ac/institutes/grid.444703.0
66 schema:familyName Rout
67 schema:givenName S. S.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014032745645.59
69 rdf:type schema:Person
70 https://doi.org/10.1016/s0019-3577(09)80005-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025507770
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1155/ijmms.2005.1189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033011396
73 rdf:type schema:CreativeWork
74 https://doi.org/10.2307/2370976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069897704
75 rdf:type schema:CreativeWork
76 https://doi.org/10.2307/2374733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069901074
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.444703.0 schema:alternateName National Institute of Technology Rourkela
79 schema:name Department of Mathematics, National Institute of Technology Rourkela, 769 008, Rourkela, Odisha, India
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...