Strongly subadditive functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-04-15

AUTHORS

K. Audenaert, F. Hiai, D. Petz

ABSTRACT

Let f: ℝ+ → ℝ. The subject is the trace inequality Tr f(A) + Tr f(P2AP2) ≦ Tr f(P12AP12) + Tr f(P23AP23), where A is a positive operator, P1; P2; P3 are orthogonal projections such that P1 + P2 + P3 = I, P12 = P1 + P2 and P23 = P2 + P3. There are several examples of functions f satisfying the inequality (called (SSA)) and the case of equality is described. More... »

PAGES

386-394

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10474-010-9222-7

DOI

http://dx.doi.org/10.1007/s10474-010-9222-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015785950


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Royal Holloway, University of London, TW20 0EX, Egham, Surrey, UK", 
          "id": "http://www.grid.ac/institutes/grid.4970.a", 
          "name": [
            "Department of Mathematics, Royal Holloway, University of London, TW20 0EX, Egham, Surrey, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Audenaert", 
        "givenName": "K.", 
        "id": "sg:person.010510633016.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010510633016.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Information Sciences, Tohoku University, 980-8579, Aoba-ku, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Graduate School of Information Sciences, Tohoku University, 980-8579, Aoba-ku, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hiai", 
        "givenName": "F.", 
        "id": "sg:person.011135635001.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011135635001.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Alfr\u00e9d R\u00e9nyi Institute of Mathematics, POB 127, H-1364, Budapest, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.423969.3", 
          "name": [
            "Alfr\u00e9d R\u00e9nyi Institute of Mathematics, POB 127, H-1364, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petz", 
        "givenName": "D.", 
        "id": "sg:person.014721432715.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014721432715.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-02313-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047058500", 
          "https://doi.org/10.1007/978-3-662-02313-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01450679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052884627", 
          "https://doi.org/10.1007/bf01450679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0653-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000441999", 
          "https://doi.org/10.1007/978-1-4612-0653-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-04-15", 
    "datePublishedReg": "2010-04-15", 
    "description": "Let f: \u211d+ \u2192 \u211d. The subject is the trace inequality Tr f(A) + Tr f(P2AP2) \u2266 Tr f(P12AP12) + Tr f(P23AP23), where A is a positive operator, P1; P2; P3 are orthogonal projections such that P1 + P2 + P3 = I, P12 = P1 + P2 and P23 = P2 + P3. There are several examples of functions f satisfying the inequality (called (SSA)) and the case of equality is described.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10474-010-9222-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6025195", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136684", 
        "issn": [
          "0236-5294", 
          "1588-2632"
        ], 
        "name": "Acta Mathematica Hungarica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "128"
      }
    ], 
    "keywords": [
      "p23", 
      "P1", 
      "P2", 
      "TR", 
      "P3", 
      "P12", 
      "function", 
      "example", 
      "projections", 
      "orthogonal projection", 
      "cases", 
      "subadditive functions", 
      "subjects", 
      "operators", 
      "equality", 
      "positive operators", 
      "function f", 
      "inequality", 
      "trace inequality Tr", 
      "inequality Tr", 
      "case of equality"
    ], 
    "name": "Strongly subadditive functions", 
    "pagination": "386-394", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015785950"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10474-010-9222-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10474-010-9222-7", 
      "https://app.dimensions.ai/details/publication/pub.1015785950"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10474-010-9222-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10474-010-9222-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10474-010-9222-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10474-010-9222-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10474-010-9222-7'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      22 PREDICATES      49 URIs      38 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10474-010-9222-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc1d17c4bfab2490fb5a954754c0e26c4
4 schema:citation sg:pub.10.1007/978-1-4612-0653-8
5 sg:pub.10.1007/978-3-662-02313-6
6 sg:pub.10.1007/bf01450679
7 schema:datePublished 2010-04-15
8 schema:datePublishedReg 2010-04-15
9 schema:description Let f: ℝ+ → ℝ. The subject is the trace inequality Tr f(A) + Tr f(P2AP2) ≦ Tr f(P12AP12) + Tr f(P23AP23), where A is a positive operator, P1; P2; P3 are orthogonal projections such that P1 + P2 + P3 = I, P12 = P1 + P2 and P23 = P2 + P3. There are several examples of functions f satisfying the inequality (called (SSA)) and the case of equality is described.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N7d929aa3589d480d85aa098d3da06b68
14 Nfb56813d710542f598eaf9d90f590736
15 sg:journal.1136684
16 schema:keywords P1
17 P12
18 P2
19 P3
20 TR
21 case of equality
22 cases
23 equality
24 example
25 function
26 function f
27 inequality
28 inequality Tr
29 operators
30 orthogonal projection
31 p23
32 positive operators
33 projections
34 subadditive functions
35 subjects
36 trace inequality Tr
37 schema:name Strongly subadditive functions
38 schema:pagination 386-394
39 schema:productId N2649b8a71ac744679ccc8ef04a5045cc
40 Nc83642d8da244b2089ef176545dba041
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015785950
42 https://doi.org/10.1007/s10474-010-9222-7
43 schema:sdDatePublished 2021-12-01T19:23
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N76d557a476f646e498394c1779aa0c8f
46 schema:url https://doi.org/10.1007/s10474-010-9222-7
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0dbe7874f47e425da1621e33d367f7b4 rdf:first sg:person.011135635001.34
51 rdf:rest N1aec72ee16ba48ee8768fdb294bec0ae
52 N1aec72ee16ba48ee8768fdb294bec0ae rdf:first sg:person.014721432715.52
53 rdf:rest rdf:nil
54 N2649b8a71ac744679ccc8ef04a5045cc schema:name doi
55 schema:value 10.1007/s10474-010-9222-7
56 rdf:type schema:PropertyValue
57 N76d557a476f646e498394c1779aa0c8f schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N7d929aa3589d480d85aa098d3da06b68 schema:issueNumber 4
60 rdf:type schema:PublicationIssue
61 Nc1d17c4bfab2490fb5a954754c0e26c4 rdf:first sg:person.010510633016.55
62 rdf:rest N0dbe7874f47e425da1621e33d367f7b4
63 Nc83642d8da244b2089ef176545dba041 schema:name dimensions_id
64 schema:value pub.1015785950
65 rdf:type schema:PropertyValue
66 Nfb56813d710542f598eaf9d90f590736 schema:volumeNumber 128
67 rdf:type schema:PublicationVolume
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
72 schema:name Pure Mathematics
73 rdf:type schema:DefinedTerm
74 sg:grant.6025195 http://pending.schema.org/fundedItem sg:pub.10.1007/s10474-010-9222-7
75 rdf:type schema:MonetaryGrant
76 sg:journal.1136684 schema:issn 0236-5294
77 1588-2632
78 schema:name Acta Mathematica Hungarica
79 schema:publisher Springer Nature
80 rdf:type schema:Periodical
81 sg:person.010510633016.55 schema:affiliation grid-institutes:grid.4970.a
82 schema:familyName Audenaert
83 schema:givenName K.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010510633016.55
85 rdf:type schema:Person
86 sg:person.011135635001.34 schema:affiliation grid-institutes:grid.69566.3a
87 schema:familyName Hiai
88 schema:givenName F.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011135635001.34
90 rdf:type schema:Person
91 sg:person.014721432715.52 schema:affiliation grid-institutes:grid.423969.3
92 schema:familyName Petz
93 schema:givenName D.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014721432715.52
95 rdf:type schema:Person
96 sg:pub.10.1007/978-1-4612-0653-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000441999
97 https://doi.org/10.1007/978-1-4612-0653-8
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-3-662-02313-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047058500
100 https://doi.org/10.1007/978-3-662-02313-6
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf01450679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052884627
103 https://doi.org/10.1007/bf01450679
104 rdf:type schema:CreativeWork
105 grid-institutes:grid.423969.3 schema:alternateName Alfréd Rényi Institute of Mathematics, POB 127, H-1364, Budapest, Hungary
106 schema:name Alfréd Rényi Institute of Mathematics, POB 127, H-1364, Budapest, Hungary
107 rdf:type schema:Organization
108 grid-institutes:grid.4970.a schema:alternateName Department of Mathematics, Royal Holloway, University of London, TW20 0EX, Egham, Surrey, UK
109 schema:name Department of Mathematics, Royal Holloway, University of London, TW20 0EX, Egham, Surrey, UK
110 rdf:type schema:Organization
111 grid-institutes:grid.69566.3a schema:alternateName Graduate School of Information Sciences, Tohoku University, 980-8579, Aoba-ku, Sendai, Japan
112 schema:name Graduate School of Information Sciences, Tohoku University, 980-8579, Aoba-ku, Sendai, Japan
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...