Order-sorted equational generalization algorithm revisited View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-09-25

AUTHORS

María Alpuente, Santiago Escobar, José Meseguer, Julia Sapiña

ABSTRACT

Generalization, also called anti-unification, is the dual of unification. A generalizer of two terms t and t′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime }$\end{document} is a term t′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime \prime }$\end{document} of which t and t′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime }$\end{document} are substitution instances. The dual of most general equational unifiers is that of least general equational generalizers, i.e., most specific anti-instances modulo equations. In a previous work, we extended the classical untyped generalization algorithm to: (1) an order-sorted typed setting with sorts, subsorts, and subtype polymorphism; (2) work modulo equational theories, where function symbols can obey any combination of associativity, commutativity, and identity axioms (including the empty set of such axioms); and (3) the combination of both, which results in a modular, order-sorted equational generalization algorithm. However, Cerna and Kutsia showed that our algorithm is generally incomplete for the case of identity axioms and a counterexample was given. Furthermore, they proved that, in theories with two identity elements or more, generalization with identity axioms is generally nullary, yet it is finitary for both the linear and one-unital fragments, i.e., either solutions with repeated variables are disregarded or the considered theories are restricted to having just one function symbol with an identity or unit element. In this work, we show how we can easily extend our original inference system to cope with the non-linear fragment and identify a more general class than one–unit theories where generalization with identity axioms is finitary. More... »

PAGES

499-522

References to SciGraph publications

  • 2007-01-01. Usages of Generalization in Case-Based Reasoning in CASE-BASED REASONING RESEARCH AND DEVELOPMENT
  • 2020-02-07. Efficient Safety Enforcement for Maude Programs via Program Specialization in the ÁTAME System in MATHEMATICS IN COMPUTER SCIENCE
  • 1998. Membership algebra as a logical framework for equational specification in RECENT TRENDS IN ALGEBRAIC DEVELOPMENT TECHNIQUES
  • 2019-05-06. : A High-Performance System for Modular ACU Generalization with Subtyping and Inheritance in LOGICS IN ARTIFICIAL INTELLIGENCE
  • 2009. Termination Modulo Combinations of Equational Theories in FRONTIERS OF COMBINING SYSTEMS
  • 2014. ACUOS: A System for Modular ACU Generalization with Subtyping and Inheritance in LOGICS IN ARTIFICIAL INTELLIGENCE
  • 2009. A Modular Equational Generalization Algorithm in LOGIC-BASED PROGRAM SYNTHESIS AND TRANSFORMATION
  • 2011-12-17. Similarity measures over refinement graphs in MACHINE LEARNING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10472-021-09771-1

    DOI

    http://dx.doi.org/10.1007/s10472-021-09771-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141395264


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain", 
              "id": "http://www.grid.ac/institutes/grid.157927.f", 
              "name": [
                "Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alpuente", 
            "givenName": "Mar\u00eda", 
            "id": "sg:person.010344015011.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344015011.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain", 
              "id": "http://www.grid.ac/institutes/grid.157927.f", 
              "name": [
                "Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Escobar", 
            "givenName": "Santiago", 
            "id": "sg:person.016354322055.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016354322055.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Illinois at Urbana-Champaign, Champaign, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.35403.31", 
              "name": [
                "University of Illinois at Urbana-Champaign, Champaign, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meseguer", 
            "givenName": "Jos\u00e9", 
            "id": "sg:person.013667315414.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013667315414.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain", 
              "id": "http://www.grid.ac/institutes/grid.157927.f", 
              "name": [
                "Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sapi\u00f1a", 
            "givenName": "Julia", 
            "id": "sg:person.015213402353.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015213402353.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-11558-0_40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018933075", 
              "https://doi.org/10.1007/978-3-319-11558-0_40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04222-5_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043246740", 
              "https://doi.org/10.1007/978-3-642-04222-5_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-19570-0_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113961918", 
              "https://doi.org/10.1007/978-3-030-19570-0_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-00515-2_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032808765", 
              "https://doi.org/10.1007/978-3-642-00515-2_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74141-1_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001845241", 
              "https://doi.org/10.1007/978-3-540-74141-1_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11786-020-00455-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124668992", 
              "https://doi.org/10.1007/s11786-020-00455-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-64299-4_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002824877", 
              "https://doi.org/10.1007/3-540-64299-4_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-011-5274-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031185551", 
              "https://doi.org/10.1007/s10994-011-5274-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-25", 
        "datePublishedReg": "2021-09-25", 
        "description": "Generalization, also called anti-unification, is the dual of unification. A generalizer of two terms t and t\u2032\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$t^{\\prime }$\\end{document} is a term t\u2032\u2032\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$t^{\\prime \\prime }$\\end{document} of which t and t\u2032\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$t^{\\prime }$\\end{document} are substitution instances. The dual of most general equational unifiers is that of least general equational generalizers, i.e., most specific anti-instances modulo equations. In a previous work, we extended the classical untyped generalization algorithm to: (1) an order-sorted typed setting with sorts, subsorts, and subtype polymorphism; (2) work modulo equational theories, where function symbols can obey any combination of associativity, commutativity, and identity axioms (including the empty set of such axioms); and (3) the combination of both, which results in a modular, order-sorted equational generalization algorithm. However, Cerna and Kutsia showed that our algorithm is generally incomplete for the case of identity axioms and a counterexample was given. Furthermore, they proved that, in theories with two identity elements or more, generalization with identity axioms is generally nullary, yet it is finitary for both the linear and one-unital fragments, i.e., either solutions with repeated variables are disregarded or the considered theories are restricted to having just one function symbol with an identity or unit element. In this work, we show how we can easily extend our original inference system to cope with the non-linear fragment and identify a more general class than one\u2013unit theories where generalization with identity axioms is finitary.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10472-021-09771-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043955", 
            "issn": [
              "1012-2443", 
              "1573-7470"
            ], 
            "name": "Annals of Mathematics and Artificial Intelligence", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "90"
          }
        ], 
        "keywords": [
          "symbols", 
          "identity element", 
          "identity", 
          "unifiers", 
          "work", 
          "sort", 
          "theory", 
          "function symbols", 
          "unification", 
          "generalizers", 
          "term t", 
          "instances", 
          "subsorts", 
          "axioms", 
          "elements", 
          "generalization", 
          "terms", 
          "equational theory", 
          "class", 
          "previous work", 
          "generalization algorithm", 
          "subtype polymorphism", 
          "polymorphism", 
          "combination", 
          "associativity", 
          "ceRNA", 
          "cases", 
          "counterexamples", 
          "fragments", 
          "variables", 
          "system", 
          "algorithm", 
          "commutativity", 
          "solution", 
          "dual", 
          "modulo equations", 
          "equations", 
          "identity axioms", 
          "unit element", 
          "inference system", 
          "general class", 
          "substitution instances", 
          "modulo equational theories", 
          "combination of associativity"
        ], 
        "name": "Order-sorted equational generalization algorithm revisited", 
        "pagination": "499-522", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141395264"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10472-021-09771-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10472-021-09771-1", 
          "https://app.dimensions.ai/details/publication/pub.1141395264"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_906.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10472-021-09771-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09771-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09771-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09771-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09771-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    170 TRIPLES      22 PREDICATES      80 URIs      61 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10472-021-09771-1 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 anzsrc-for:08
    4 anzsrc-for:0801
    5 anzsrc-for:0802
    6 schema:author N79076c4768784f44add85f59946b28c0
    7 schema:citation sg:pub.10.1007/3-540-64299-4_26
    8 sg:pub.10.1007/978-3-030-19570-0_11
    9 sg:pub.10.1007/978-3-319-11558-0_40
    10 sg:pub.10.1007/978-3-540-74141-1_3
    11 sg:pub.10.1007/978-3-642-00515-2_3
    12 sg:pub.10.1007/978-3-642-04222-5_15
    13 sg:pub.10.1007/s10994-011-5274-3
    14 sg:pub.10.1007/s11786-020-00455-3
    15 schema:datePublished 2021-09-25
    16 schema:datePublishedReg 2021-09-25
    17 schema:description Generalization, also called anti-unification, is the dual of unification. A generalizer of two terms t and t′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime }$\end{document} is a term t′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime \prime }$\end{document} of which t and t′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime }$\end{document} are substitution instances. The dual of most general equational unifiers is that of least general equational generalizers, i.e., most specific anti-instances modulo equations. In a previous work, we extended the classical untyped generalization algorithm to: (1) an order-sorted typed setting with sorts, subsorts, and subtype polymorphism; (2) work modulo equational theories, where function symbols can obey any combination of associativity, commutativity, and identity axioms (including the empty set of such axioms); and (3) the combination of both, which results in a modular, order-sorted equational generalization algorithm. However, Cerna and Kutsia showed that our algorithm is generally incomplete for the case of identity axioms and a counterexample was given. Furthermore, they proved that, in theories with two identity elements or more, generalization with identity axioms is generally nullary, yet it is finitary for both the linear and one-unital fragments, i.e., either solutions with repeated variables are disregarded or the considered theories are restricted to having just one function symbol with an identity or unit element. In this work, we show how we can easily extend our original inference system to cope with the non-linear fragment and identify a more general class than one–unit theories where generalization with identity axioms is finitary.
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N32c50c611a204c92a6bcfc3774cf055d
    22 N44e62e4692634f0f87b1574e81beb49b
    23 sg:journal.1043955
    24 schema:keywords algorithm
    25 associativity
    26 axioms
    27 cases
    28 ceRNA
    29 class
    30 combination
    31 combination of associativity
    32 commutativity
    33 counterexamples
    34 dual
    35 elements
    36 equational theory
    37 equations
    38 fragments
    39 function symbols
    40 general class
    41 generalization
    42 generalization algorithm
    43 generalizers
    44 identity
    45 identity axioms
    46 identity element
    47 inference system
    48 instances
    49 modulo equational theories
    50 modulo equations
    51 polymorphism
    52 previous work
    53 solution
    54 sort
    55 subsorts
    56 substitution instances
    57 subtype polymorphism
    58 symbols
    59 system
    60 term t
    61 terms
    62 theory
    63 unification
    64 unifiers
    65 unit element
    66 variables
    67 work
    68 schema:name Order-sorted equational generalization algorithm revisited
    69 schema:pagination 499-522
    70 schema:productId N4952295abc7b4d5196b73aa474bd6263
    71 Nb1d9f34986524538b5b8434919f49e4e
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141395264
    73 https://doi.org/10.1007/s10472-021-09771-1
    74 schema:sdDatePublished 2022-05-20T07:38
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher N4f11c9c314964d7b9fb504df77b20415
    77 schema:url https://doi.org/10.1007/s10472-021-09771-1
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N32c50c611a204c92a6bcfc3774cf055d schema:issueNumber 5
    82 rdf:type schema:PublicationIssue
    83 N44e62e4692634f0f87b1574e81beb49b schema:volumeNumber 90
    84 rdf:type schema:PublicationVolume
    85 N4952295abc7b4d5196b73aa474bd6263 schema:name dimensions_id
    86 schema:value pub.1141395264
    87 rdf:type schema:PropertyValue
    88 N4f11c9c314964d7b9fb504df77b20415 schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 N6ff1734511e94d9d953c57ce2fb14816 rdf:first sg:person.015213402353.49
    91 rdf:rest rdf:nil
    92 N79076c4768784f44add85f59946b28c0 rdf:first sg:person.010344015011.31
    93 rdf:rest Nd2b94bebabef4c829433c86a69aabc9a
    94 N90cd8b264fc443b898e3505d5d5b55c5 rdf:first sg:person.013667315414.11
    95 rdf:rest N6ff1734511e94d9d953c57ce2fb14816
    96 Nb1d9f34986524538b5b8434919f49e4e schema:name doi
    97 schema:value 10.1007/s10472-021-09771-1
    98 rdf:type schema:PropertyValue
    99 Nd2b94bebabef4c829433c86a69aabc9a rdf:first sg:person.016354322055.39
    100 rdf:rest N90cd8b264fc443b898e3505d5d5b55c5
    101 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Mathematical Sciences
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Applied Mathematics
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Information and Computing Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Artificial Intelligence and Image Processing
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Computation Theory and Mathematics
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1043955 schema:issn 1012-2443
    117 1573-7470
    118 schema:name Annals of Mathematics and Artificial Intelligence
    119 schema:publisher Springer Nature
    120 rdf:type schema:Periodical
    121 sg:person.010344015011.31 schema:affiliation grid-institutes:grid.157927.f
    122 schema:familyName Alpuente
    123 schema:givenName María
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344015011.31
    125 rdf:type schema:Person
    126 sg:person.013667315414.11 schema:affiliation grid-institutes:grid.35403.31
    127 schema:familyName Meseguer
    128 schema:givenName José
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013667315414.11
    130 rdf:type schema:Person
    131 sg:person.015213402353.49 schema:affiliation grid-institutes:grid.157927.f
    132 schema:familyName Sapiña
    133 schema:givenName Julia
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015213402353.49
    135 rdf:type schema:Person
    136 sg:person.016354322055.39 schema:affiliation grid-institutes:grid.157927.f
    137 schema:familyName Escobar
    138 schema:givenName Santiago
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016354322055.39
    140 rdf:type schema:Person
    141 sg:pub.10.1007/3-540-64299-4_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002824877
    142 https://doi.org/10.1007/3-540-64299-4_26
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/978-3-030-19570-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113961918
    145 https://doi.org/10.1007/978-3-030-19570-0_11
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/978-3-319-11558-0_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018933075
    148 https://doi.org/10.1007/978-3-319-11558-0_40
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/978-3-540-74141-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001845241
    151 https://doi.org/10.1007/978-3-540-74141-1_3
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/978-3-642-00515-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032808765
    154 https://doi.org/10.1007/978-3-642-00515-2_3
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/978-3-642-04222-5_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043246740
    157 https://doi.org/10.1007/978-3-642-04222-5_15
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s10994-011-5274-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031185551
    160 https://doi.org/10.1007/s10994-011-5274-3
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s11786-020-00455-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124668992
    163 https://doi.org/10.1007/s11786-020-00455-3
    164 rdf:type schema:CreativeWork
    165 grid-institutes:grid.157927.f schema:alternateName Universitat Politècnica de València, València, Spain
    166 schema:name Universitat Politècnica de València, València, Spain
    167 rdf:type schema:Organization
    168 grid-institutes:grid.35403.31 schema:alternateName University of Illinois at Urbana-Champaign, Champaign, IL, USA
    169 schema:name University of Illinois at Urbana-Champaign, Champaign, IL, USA
    170 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...