Order-sorted equational generalization algorithm revisited View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-09-25

AUTHORS

María Alpuente, Santiago Escobar, José Meseguer, Julia Sapiña

ABSTRACT

Generalization, also called anti-unification, is the dual of unification. A generalizer of two terms t and t′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime }$\end{document} is a term t′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime \prime }$\end{document} of which t and t′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime }$\end{document} are substitution instances. The dual of most general equational unifiers is that of least general equational generalizers, i.e., most specific anti-instances modulo equations. In a previous work, we extended the classical untyped generalization algorithm to: (1) an order-sorted typed setting with sorts, subsorts, and subtype polymorphism; (2) work modulo equational theories, where function symbols can obey any combination of associativity, commutativity, and identity axioms (including the empty set of such axioms); and (3) the combination of both, which results in a modular, order-sorted equational generalization algorithm. However, Cerna and Kutsia showed that our algorithm is generally incomplete for the case of identity axioms and a counterexample was given. Furthermore, they proved that, in theories with two identity elements or more, generalization with identity axioms is generally nullary, yet it is finitary for both the linear and one-unital fragments, i.e., either solutions with repeated variables are disregarded or the considered theories are restricted to having just one function symbol with an identity or unit element. In this work, we show how we can easily extend our original inference system to cope with the non-linear fragment and identify a more general class than one–unit theories where generalization with identity axioms is finitary. More... »

PAGES

1-24

References to SciGraph publications

  • 2007-01-01. Usages of Generalization in Case-Based Reasoning in CASE-BASED REASONING RESEARCH AND DEVELOPMENT
  • 2020-02-07. Efficient Safety Enforcement for Maude Programs via Program Specialization in the ÁTAME System in MATHEMATICS IN COMPUTER SCIENCE
  • 1998. Membership algebra as a logical framework for equational specification in RECENT TRENDS IN ALGEBRAIC DEVELOPMENT TECHNIQUES
  • 2019-05-06. : A High-Performance System for Modular ACU Generalization with Subtyping and Inheritance in LOGICS IN ARTIFICIAL INTELLIGENCE
  • 2009. Termination Modulo Combinations of Equational Theories in FRONTIERS OF COMBINING SYSTEMS
  • 2014. ACUOS: A System for Modular ACU Generalization with Subtyping and Inheritance in LOGICS IN ARTIFICIAL INTELLIGENCE
  • 2009. A Modular Equational Generalization Algorithm in LOGIC-BASED PROGRAM SYNTHESIS AND TRANSFORMATION
  • 2011-12-17. Similarity measures over refinement graphs in MACHINE LEARNING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10472-021-09771-1

    DOI

    http://dx.doi.org/10.1007/s10472-021-09771-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141395264


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain", 
              "id": "http://www.grid.ac/institutes/grid.157927.f", 
              "name": [
                "Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alpuente", 
            "givenName": "Mar\u00eda", 
            "id": "sg:person.010344015011.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344015011.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain", 
              "id": "http://www.grid.ac/institutes/grid.157927.f", 
              "name": [
                "Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Escobar", 
            "givenName": "Santiago", 
            "id": "sg:person.016354322055.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016354322055.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Illinois at Urbana-Champaign, Champaign, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.35403.31", 
              "name": [
                "University of Illinois at Urbana-Champaign, Champaign, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meseguer", 
            "givenName": "Jos\u00e9", 
            "id": "sg:person.013667315414.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013667315414.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain", 
              "id": "http://www.grid.ac/institutes/grid.157927.f", 
              "name": [
                "Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sapi\u00f1a", 
            "givenName": "Julia", 
            "id": "sg:person.015213402353.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015213402353.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-04222-5_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043246740", 
              "https://doi.org/10.1007/978-3-642-04222-5_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-64299-4_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002824877", 
              "https://doi.org/10.1007/3-540-64299-4_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-00515-2_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032808765", 
              "https://doi.org/10.1007/978-3-642-00515-2_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74141-1_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001845241", 
              "https://doi.org/10.1007/978-3-540-74141-1_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-11558-0_40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018933075", 
              "https://doi.org/10.1007/978-3-319-11558-0_40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-19570-0_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113961918", 
              "https://doi.org/10.1007/978-3-030-19570-0_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11786-020-00455-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124668992", 
              "https://doi.org/10.1007/s11786-020-00455-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-011-5274-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031185551", 
              "https://doi.org/10.1007/s10994-011-5274-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-25", 
        "datePublishedReg": "2021-09-25", 
        "description": "Generalization, also called anti-unification, is the dual of unification. A generalizer of two terms t and t\u2032\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$t^{\\prime }$\\end{document} is a term t\u2032\u2032\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$t^{\\prime \\prime }$\\end{document} of which t and t\u2032\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$t^{\\prime }$\\end{document} are substitution instances. The dual of most general equational unifiers is that of least general equational generalizers, i.e., most specific anti-instances modulo equations. In a previous work, we extended the classical untyped generalization algorithm to: (1) an order-sorted typed setting with sorts, subsorts, and subtype polymorphism; (2) work modulo equational theories, where function symbols can obey any combination of associativity, commutativity, and identity axioms (including the empty set of such axioms); and (3) the combination of both, which results in a modular, order-sorted equational generalization algorithm. However, Cerna and Kutsia showed that our algorithm is generally incomplete for the case of identity axioms and a counterexample was given. Furthermore, they proved that, in theories with two identity elements or more, generalization with identity axioms is generally nullary, yet it is finitary for both the linear and one-unital fragments, i.e., either solutions with repeated variables are disregarded or the considered theories are restricted to having just one function symbol with an identity or unit element. In this work, we show how we can easily extend our original inference system to cope with the non-linear fragment and identify a more general class than one\u2013unit theories where generalization with identity axioms is finitary.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10472-021-09771-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043955", 
            "issn": [
              "1012-2443", 
              "1573-7470"
            ], 
            "name": "Annals of Mathematics and Artificial Intelligence", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "symbols", 
          "identity", 
          "unification", 
          "unifiers", 
          "work", 
          "sort", 
          "theory", 
          "function symbols", 
          "identity element", 
          "generalizers", 
          "instances", 
          "subsorts", 
          "axioms", 
          "elements", 
          "generalization", 
          "term t", 
          "terms", 
          "equational theory", 
          "class", 
          "previous work", 
          "generalization algorithm", 
          "subtype polymorphism", 
          "polymorphism", 
          "combination", 
          "ceRNA", 
          "cases", 
          "counterexamples", 
          "fragments", 
          "associativity", 
          "variables", 
          "system", 
          "algorithm", 
          "commutativity", 
          "solution", 
          "dual", 
          "modulo equations", 
          "equations", 
          "identity axioms", 
          "unit element", 
          "inference system", 
          "general class", 
          "substitution instances", 
          "most general equational unifiers", 
          "general equational unifiers", 
          "equational unifiers", 
          "least general equational generalizers", 
          "general equational generalizers", 
          "equational generalizers", 
          "most specific anti-instances modulo equations", 
          "specific anti-instances modulo equations", 
          "anti-instances modulo equations", 
          "classical untyped generalization algorithm", 
          "untyped generalization algorithm", 
          "work modulo equational theories", 
          "modulo equational theories", 
          "combination of associativity", 
          "order-sorted equational generalization algorithm", 
          "equational generalization algorithm", 
          "Kutsia", 
          "one-unital fragments", 
          "original inference system", 
          "non-linear fragment", 
          "one\u2013unit theories"
        ], 
        "name": "Order-sorted equational generalization algorithm revisited", 
        "pagination": "1-24", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141395264"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10472-021-09771-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10472-021-09771-1", 
          "https://app.dimensions.ai/details/publication/pub.1141395264"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_884.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10472-021-09771-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09771-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09771-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09771-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09771-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    183 TRIPLES      22 PREDICATES      97 URIs      78 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10472-021-09771-1 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 anzsrc-for:08
    4 anzsrc-for:0801
    5 anzsrc-for:0802
    6 schema:author N3006e1a5370141d69340e70440a9ea5a
    7 schema:citation sg:pub.10.1007/3-540-64299-4_26
    8 sg:pub.10.1007/978-3-030-19570-0_11
    9 sg:pub.10.1007/978-3-319-11558-0_40
    10 sg:pub.10.1007/978-3-540-74141-1_3
    11 sg:pub.10.1007/978-3-642-00515-2_3
    12 sg:pub.10.1007/978-3-642-04222-5_15
    13 sg:pub.10.1007/s10994-011-5274-3
    14 sg:pub.10.1007/s11786-020-00455-3
    15 schema:datePublished 2021-09-25
    16 schema:datePublishedReg 2021-09-25
    17 schema:description Generalization, also called anti-unification, is the dual of unification. A generalizer of two terms t and t′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime }$\end{document} is a term t′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime \prime }$\end{document} of which t and t′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime }$\end{document} are substitution instances. The dual of most general equational unifiers is that of least general equational generalizers, i.e., most specific anti-instances modulo equations. In a previous work, we extended the classical untyped generalization algorithm to: (1) an order-sorted typed setting with sorts, subsorts, and subtype polymorphism; (2) work modulo equational theories, where function symbols can obey any combination of associativity, commutativity, and identity axioms (including the empty set of such axioms); and (3) the combination of both, which results in a modular, order-sorted equational generalization algorithm. However, Cerna and Kutsia showed that our algorithm is generally incomplete for the case of identity axioms and a counterexample was given. Furthermore, they proved that, in theories with two identity elements or more, generalization with identity axioms is generally nullary, yet it is finitary for both the linear and one-unital fragments, i.e., either solutions with repeated variables are disregarded or the considered theories are restricted to having just one function symbol with an identity or unit element. In this work, we show how we can easily extend our original inference system to cope with the non-linear fragment and identify a more general class than one–unit theories where generalization with identity axioms is finitary.
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf sg:journal.1043955
    22 schema:keywords Kutsia
    23 algorithm
    24 anti-instances modulo equations
    25 associativity
    26 axioms
    27 cases
    28 ceRNA
    29 class
    30 classical untyped generalization algorithm
    31 combination
    32 combination of associativity
    33 commutativity
    34 counterexamples
    35 dual
    36 elements
    37 equational generalization algorithm
    38 equational generalizers
    39 equational theory
    40 equational unifiers
    41 equations
    42 fragments
    43 function symbols
    44 general class
    45 general equational generalizers
    46 general equational unifiers
    47 generalization
    48 generalization algorithm
    49 generalizers
    50 identity
    51 identity axioms
    52 identity element
    53 inference system
    54 instances
    55 least general equational generalizers
    56 modulo equational theories
    57 modulo equations
    58 most general equational unifiers
    59 most specific anti-instances modulo equations
    60 non-linear fragment
    61 one-unital fragments
    62 one–unit theories
    63 order-sorted equational generalization algorithm
    64 original inference system
    65 polymorphism
    66 previous work
    67 solution
    68 sort
    69 specific anti-instances modulo equations
    70 subsorts
    71 substitution instances
    72 subtype polymorphism
    73 symbols
    74 system
    75 term t
    76 terms
    77 theory
    78 unification
    79 unifiers
    80 unit element
    81 untyped generalization algorithm
    82 variables
    83 work
    84 work modulo equational theories
    85 schema:name Order-sorted equational generalization algorithm revisited
    86 schema:pagination 1-24
    87 schema:productId N55f5d0e4ba834b66bfd505bfce64ed6a
    88 N94ddd93b9386498e9bd5778e4c119dd5
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141395264
    90 https://doi.org/10.1007/s10472-021-09771-1
    91 schema:sdDatePublished 2022-01-01T19:01
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher N0bbc142beace4a1ca2596f4a487133c4
    94 schema:url https://doi.org/10.1007/s10472-021-09771-1
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N0bbc142beace4a1ca2596f4a487133c4 schema:name Springer Nature - SN SciGraph project
    99 rdf:type schema:Organization
    100 N3006e1a5370141d69340e70440a9ea5a rdf:first sg:person.010344015011.31
    101 rdf:rest Nb800820b3c49425688c2c8faa075224c
    102 N47e470e2ddaa4465a95c4cc85ee212ff rdf:first sg:person.015213402353.49
    103 rdf:rest rdf:nil
    104 N55f5d0e4ba834b66bfd505bfce64ed6a schema:name dimensions_id
    105 schema:value pub.1141395264
    106 rdf:type schema:PropertyValue
    107 N782ce00700cf41bfa9e2ea02f2279d51 rdf:first sg:person.013667315414.11
    108 rdf:rest N47e470e2ddaa4465a95c4cc85ee212ff
    109 N94ddd93b9386498e9bd5778e4c119dd5 schema:name doi
    110 schema:value 10.1007/s10472-021-09771-1
    111 rdf:type schema:PropertyValue
    112 Nb800820b3c49425688c2c8faa075224c rdf:first sg:person.016354322055.39
    113 rdf:rest N782ce00700cf41bfa9e2ea02f2279d51
    114 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Mathematical Sciences
    116 rdf:type schema:DefinedTerm
    117 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Applied Mathematics
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Information and Computing Sciences
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Artificial Intelligence and Image Processing
    125 rdf:type schema:DefinedTerm
    126 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Computation Theory and Mathematics
    128 rdf:type schema:DefinedTerm
    129 sg:journal.1043955 schema:issn 1012-2443
    130 1573-7470
    131 schema:name Annals of Mathematics and Artificial Intelligence
    132 schema:publisher Springer Nature
    133 rdf:type schema:Periodical
    134 sg:person.010344015011.31 schema:affiliation grid-institutes:grid.157927.f
    135 schema:familyName Alpuente
    136 schema:givenName María
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344015011.31
    138 rdf:type schema:Person
    139 sg:person.013667315414.11 schema:affiliation grid-institutes:grid.35403.31
    140 schema:familyName Meseguer
    141 schema:givenName José
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013667315414.11
    143 rdf:type schema:Person
    144 sg:person.015213402353.49 schema:affiliation grid-institutes:grid.157927.f
    145 schema:familyName Sapiña
    146 schema:givenName Julia
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015213402353.49
    148 rdf:type schema:Person
    149 sg:person.016354322055.39 schema:affiliation grid-institutes:grid.157927.f
    150 schema:familyName Escobar
    151 schema:givenName Santiago
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016354322055.39
    153 rdf:type schema:Person
    154 sg:pub.10.1007/3-540-64299-4_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002824877
    155 https://doi.org/10.1007/3-540-64299-4_26
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/978-3-030-19570-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113961918
    158 https://doi.org/10.1007/978-3-030-19570-0_11
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/978-3-319-11558-0_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018933075
    161 https://doi.org/10.1007/978-3-319-11558-0_40
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/978-3-540-74141-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001845241
    164 https://doi.org/10.1007/978-3-540-74141-1_3
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/978-3-642-00515-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032808765
    167 https://doi.org/10.1007/978-3-642-00515-2_3
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/978-3-642-04222-5_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043246740
    170 https://doi.org/10.1007/978-3-642-04222-5_15
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s10994-011-5274-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031185551
    173 https://doi.org/10.1007/s10994-011-5274-3
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s11786-020-00455-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124668992
    176 https://doi.org/10.1007/s11786-020-00455-3
    177 rdf:type schema:CreativeWork
    178 grid-institutes:grid.157927.f schema:alternateName Universitat Politècnica de València, València, Spain
    179 schema:name Universitat Politècnica de València, València, Spain
    180 rdf:type schema:Organization
    181 grid-institutes:grid.35403.31 schema:alternateName University of Illinois at Urbana-Champaign, Champaign, IL, USA
    182 schema:name University of Illinois at Urbana-Champaign, Champaign, IL, USA
    183 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...