# Order-sorted equational generalization algorithm revisited

Ontology type: schema:ScholarlyArticle

### Article Info

DATE

2021-09-25

AUTHORS ABSTRACT

Generalization, also called anti-unification, is the dual of unification. A generalizer of two terms t and t′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime }$\end{document} is a term t′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime \prime }$\end{document} of which t and t′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime }$\end{document} are substitution instances. The dual of most general equational unifiers is that of least general equational generalizers, i.e., most specific anti-instances modulo equations. In a previous work, we extended the classical untyped generalization algorithm to: (1) an order-sorted typed setting with sorts, subsorts, and subtype polymorphism; (2) work modulo equational theories, where function symbols can obey any combination of associativity, commutativity, and identity axioms (including the empty set of such axioms); and (3) the combination of both, which results in a modular, order-sorted equational generalization algorithm. However, Cerna and Kutsia showed that our algorithm is generally incomplete for the case of identity axioms and a counterexample was given. Furthermore, they proved that, in theories with two identity elements or more, generalization with identity axioms is generally nullary, yet it is finitary for both the linear and one-unital fragments, i.e., either solutions with repeated variables are disregarded or the considered theories are restricted to having just one function symbol with an identity or unit element. In this work, we show how we can easily extend our original inference system to cope with the non-linear fragment and identify a more general class than one–unit theories where generalization with identity axioms is finitary. More... »

PAGES

499-522

### References to SciGraph publications

• 2007-01-01. Usages of Generalization in Case-Based Reasoning in CASE-BASED REASONING RESEARCH AND DEVELOPMENT
• 2020-02-07. Efficient Safety Enforcement for Maude Programs via Program Specialization in the ÁTAME System in MATHEMATICS IN COMPUTER SCIENCE
• 1998. Membership algebra as a logical framework for equational specification in RECENT TRENDS IN ALGEBRAIC DEVELOPMENT TECHNIQUES
• 2019-05-06. : A High-Performance System for Modular ACU Generalization with Subtyping and Inheritance in LOGICS IN ARTIFICIAL INTELLIGENCE
• 2009. Termination Modulo Combinations of Equational Theories in FRONTIERS OF COMBINING SYSTEMS
• 2014. ACUOS: A System for Modular ACU Generalization with Subtyping and Inheritance in LOGICS IN ARTIFICIAL INTELLIGENCE
• 2009. A Modular Equational Generalization Algorithm in LOGIC-BASED PROGRAM SYNTHESIS AND TRANSFORMATION
• 2011-12-17. Similarity measures over refinement graphs in MACHINE LEARNING

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10472-021-09771-1

DOI

http://dx.doi.org/10.1007/s10472-021-09771-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1141395264

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain",
"id": "http://www.grid.ac/institutes/grid.157927.f",
"name": [
"Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain"
],
"type": "Organization"
},
"familyName": "Alpuente",
"givenName": "Mar\u00eda",
"id": "sg:person.010344015011.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344015011.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain",
"id": "http://www.grid.ac/institutes/grid.157927.f",
"name": [
"Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain"
],
"type": "Organization"
},
"familyName": "Escobar",
"givenName": "Santiago",
"id": "sg:person.016354322055.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016354322055.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Illinois at Urbana-Champaign, Champaign, IL, USA",
"id": "http://www.grid.ac/institutes/grid.35403.31",
"name": [
"University of Illinois at Urbana-Champaign, Champaign, IL, USA"
],
"type": "Organization"
},
"familyName": "Meseguer",
"givenName": "Jos\u00e9",
"id": "sg:person.013667315414.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013667315414.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain",
"id": "http://www.grid.ac/institutes/grid.157927.f",
"name": [
"Universitat Polit\u00e8cnica de Val\u00e8ncia, Val\u00e8ncia, Spain"
],
"type": "Organization"
},
"familyName": "Sapi\u00f1a",
"givenName": "Julia",
"id": "sg:person.015213402353.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015213402353.49"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-319-11558-0_40",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018933075",
"https://doi.org/10.1007/978-3-319-11558-0_40"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-04222-5_15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043246740",
"https://doi.org/10.1007/978-3-642-04222-5_15"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-030-19570-0_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1113961918",
"https://doi.org/10.1007/978-3-030-19570-0_11"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-00515-2_3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032808765",
"https://doi.org/10.1007/978-3-642-00515-2_3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-74141-1_3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001845241",
"https://doi.org/10.1007/978-3-540-74141-1_3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11786-020-00455-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1124668992",
"https://doi.org/10.1007/s11786-020-00455-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-540-64299-4_26",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002824877",
"https://doi.org/10.1007/3-540-64299-4_26"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10994-011-5274-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031185551",
"https://doi.org/10.1007/s10994-011-5274-3"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-09-25",
"datePublishedReg": "2021-09-25",
"description": "Generalization, also called anti-unification, is the dual of unification. A generalizer of two terms t and t\u2032\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$t^{\\prime }$\\end{document} is a term t\u2032\u2032\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$t^{\\prime \\prime }$\\end{document} of which t and t\u2032\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$t^{\\prime }$\\end{document} are substitution instances. The dual of most general equational unifiers is that of least general equational generalizers, i.e., most specific anti-instances modulo equations. In a previous work, we extended the classical untyped generalization algorithm to: (1) an order-sorted typed setting with sorts, subsorts, and subtype polymorphism; (2) work modulo equational theories, where function symbols can obey any combination of associativity, commutativity, and identity axioms (including the empty set of such axioms); and (3) the combination of both, which results in a modular, order-sorted equational generalization algorithm. However, Cerna and Kutsia showed that our algorithm is generally incomplete for the case of identity axioms and a counterexample was given. Furthermore, they proved that, in theories with two identity elements or more, generalization with identity axioms is generally nullary, yet it is finitary for both the linear and one-unital fragments, i.e., either solutions with repeated variables are disregarded or the considered theories are restricted to having just one function symbol with an identity or unit element. In this work, we show how we can easily extend our original inference system to cope with the non-linear fragment and identify a more general class than one\u2013unit theories where generalization with identity axioms is finitary.",
"genre": "article",
"id": "sg:pub.10.1007/s10472-021-09771-1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1043955",
"issn": [
"1012-2443",
"1573-7470"
],
"name": "Annals of Mathematics and Artificial Intelligence",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"symbols",
"identity element",
"identity",
"unifiers",
"work",
"sort",
"theory",
"function symbols",
"unification",
"generalizers",
"term t",
"instances",
"subsorts",
"axioms",
"elements",
"generalization",
"terms",
"equational theory",
"class",
"previous work",
"generalization algorithm",
"subtype polymorphism",
"polymorphism",
"combination",
"associativity",
"ceRNA",
"cases",
"counterexamples",
"fragments",
"variables",
"system",
"algorithm",
"commutativity",
"solution",
"dual",
"modulo equations",
"equations",
"identity axioms",
"unit element",
"inference system",
"general class",
"substitution instances",
"modulo equational theories",
"combination of associativity"
],
"name": "Order-sorted equational generalization algorithm revisited",
"pagination": "499-522",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141395264"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10472-021-09771-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10472-021-09771-1",
"https://app.dimensions.ai/details/publication/pub.1141395264"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:38",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_906.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10472-021-09771-1"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09771-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09771-1'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09771-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09771-1'

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      22 PREDICATES      80 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0102
3 anzsrc-for:08
4 anzsrc-for:0801
5 anzsrc-for:0802
7 schema:citation sg:pub.10.1007/3-540-64299-4_26
8 sg:pub.10.1007/978-3-030-19570-0_11
9 sg:pub.10.1007/978-3-319-11558-0_40
10 sg:pub.10.1007/978-3-540-74141-1_3
11 sg:pub.10.1007/978-3-642-00515-2_3
12 sg:pub.10.1007/978-3-642-04222-5_15
13 sg:pub.10.1007/s10994-011-5274-3
14 sg:pub.10.1007/s11786-020-00455-3
15 schema:datePublished 2021-09-25
16 schema:datePublishedReg 2021-09-25
17 schema:description Generalization, also called anti-unification, is the dual of unification. A generalizer of two terms t and t′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime }$\end{document} is a term t′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime \prime }$\end{document} of which t and t′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t^{\prime }$\end{document} are substitution instances. The dual of most general equational unifiers is that of least general equational generalizers, i.e., most specific anti-instances modulo equations. In a previous work, we extended the classical untyped generalization algorithm to: (1) an order-sorted typed setting with sorts, subsorts, and subtype polymorphism; (2) work modulo equational theories, where function symbols can obey any combination of associativity, commutativity, and identity axioms (including the empty set of such axioms); and (3) the combination of both, which results in a modular, order-sorted equational generalization algorithm. However, Cerna and Kutsia showed that our algorithm is generally incomplete for the case of identity axioms and a counterexample was given. Furthermore, they proved that, in theories with two identity elements or more, generalization with identity axioms is generally nullary, yet it is finitary for both the linear and one-unital fragments, i.e., either solutions with repeated variables are disregarded or the considered theories are restricted to having just one function symbol with an identity or unit element. In this work, we show how we can easily extend our original inference system to cope with the non-linear fragment and identify a more general class than one–unit theories where generalization with identity axioms is finitary.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N32c50c611a204c92a6bcfc3774cf055d
22 N44e62e4692634f0f87b1574e81beb49b
23 sg:journal.1043955
24 schema:keywords algorithm
25 associativity
26 axioms
27 cases
28 ceRNA
29 class
30 combination
31 combination of associativity
32 commutativity
33 counterexamples
34 dual
35 elements
36 equational theory
37 equations
38 fragments
39 function symbols
40 general class
41 generalization
42 generalization algorithm
43 generalizers
44 identity
45 identity axioms
46 identity element
47 inference system
48 instances
49 modulo equational theories
50 modulo equations
51 polymorphism
52 previous work
53 solution
54 sort
55 subsorts
56 substitution instances
57 subtype polymorphism
58 symbols
59 system
60 term t
61 terms
62 theory
63 unification
64 unifiers
65 unit element
66 variables
67 work
68 schema:name Order-sorted equational generalization algorithm revisited
69 schema:pagination 499-522
70 schema:productId N4952295abc7b4d5196b73aa474bd6263
71 Nb1d9f34986524538b5b8434919f49e4e
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141395264
73 https://doi.org/10.1007/s10472-021-09771-1
74 schema:sdDatePublished 2022-05-20T07:38
76 schema:sdPublisher N4f11c9c314964d7b9fb504df77b20415
77 schema:url https://doi.org/10.1007/s10472-021-09771-1
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N32c50c611a204c92a6bcfc3774cf055d schema:issueNumber 5
82 rdf:type schema:PublicationIssue
84 rdf:type schema:PublicationVolume
85 N4952295abc7b4d5196b73aa474bd6263 schema:name dimensions_id
86 schema:value pub.1141395264
87 rdf:type schema:PropertyValue
88 N4f11c9c314964d7b9fb504df77b20415 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N6ff1734511e94d9d953c57ce2fb14816 rdf:first sg:person.015213402353.49
91 rdf:rest rdf:nil
93 rdf:rest Nd2b94bebabef4c829433c86a69aabc9a
94 N90cd8b264fc443b898e3505d5d5b55c5 rdf:first sg:person.013667315414.11
95 rdf:rest N6ff1734511e94d9d953c57ce2fb14816
96 Nb1d9f34986524538b5b8434919f49e4e schema:name doi
97 schema:value 10.1007/s10472-021-09771-1
98 rdf:type schema:PropertyValue
99 Nd2b94bebabef4c829433c86a69aabc9a rdf:first sg:person.016354322055.39
100 rdf:rest N90cd8b264fc443b898e3505d5d5b55c5
101 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
102 schema:name Mathematical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
105 schema:name Applied Mathematics
106 rdf:type schema:DefinedTerm
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
111 schema:name Artificial Intelligence and Image Processing
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
114 schema:name Computation Theory and Mathematics
115 rdf:type schema:DefinedTerm
116 sg:journal.1043955 schema:issn 1012-2443
117 1573-7470
118 schema:name Annals of Mathematics and Artificial Intelligence
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.010344015011.31 schema:affiliation grid-institutes:grid.157927.f
122 schema:familyName Alpuente
123 schema:givenName María
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344015011.31
125 rdf:type schema:Person
126 sg:person.013667315414.11 schema:affiliation grid-institutes:grid.35403.31
127 schema:familyName Meseguer
128 schema:givenName José
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013667315414.11
130 rdf:type schema:Person
131 sg:person.015213402353.49 schema:affiliation grid-institutes:grid.157927.f
132 schema:familyName Sapiña
133 schema:givenName Julia
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015213402353.49
135 rdf:type schema:Person
136 sg:person.016354322055.39 schema:affiliation grid-institutes:grid.157927.f
137 schema:familyName Escobar
138 schema:givenName Santiago
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016354322055.39
140 rdf:type schema:Person
141 sg:pub.10.1007/3-540-64299-4_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002824877
142 https://doi.org/10.1007/3-540-64299-4_26
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-3-030-19570-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113961918
145 https://doi.org/10.1007/978-3-030-19570-0_11
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/978-3-319-11558-0_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018933075
148 https://doi.org/10.1007/978-3-319-11558-0_40
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/978-3-540-74141-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001845241
151 https://doi.org/10.1007/978-3-540-74141-1_3
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/978-3-642-00515-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032808765
154 https://doi.org/10.1007/978-3-642-00515-2_3
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/978-3-642-04222-5_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043246740
157 https://doi.org/10.1007/978-3-642-04222-5_15
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s10994-011-5274-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031185551
160 https://doi.org/10.1007/s10994-011-5274-3
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s11786-020-00455-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124668992
163 https://doi.org/10.1007/s11786-020-00455-3
164 rdf:type schema:CreativeWork
165 grid-institutes:grid.157927.f schema:alternateName Universitat Politècnica de València, València, Spain
166 schema:name Universitat Politècnica de València, València, Spain
167 rdf:type schema:Organization
168 grid-institutes:grid.35403.31 schema:alternateName University of Illinois at Urbana-Champaign, Champaign, IL, USA
169 schema:name University of Illinois at Urbana-Champaign, Champaign, IL, USA
170 rdf:type schema:Organization