Structured argumentation dynamics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-07-27

AUTHORS

Stipe Pandžić

ABSTRACT

This paper develops a logical theory that unifies all three standard types of argumentative attack in AI, namely rebutting, undercutting and undermining attacks. We build on default justification logic that already represents undercutting and rebutting attacks, and we add undermining attacks. Intuitively, undermining does not target default inference, as undercutting, or default conclusion, as rebutting, but rather attacks an argument’s premise as a starting point for default reasoning. In default justification logic, reasoning starts from a set of premises, which is then extended by conclusions that hold by default. We argue that modeling undermining defeaters in the view of default theories requires changing the set of premises upon receiving new information. To model changes to premises, we give a dynamic aspect to default justification logic by using the techniques from the logic of belief revision. More specifically, undermining is modeled with belief revision operations that include contracting a set of premises, that is, removing some information from it. The novel combination of default reasoning and belief revision in justification logic enriches both approaches to reasoning under uncertainty. By the end of the paper, we show some important aspects of defeasible argumentation in which our logic compares favorably to structured argumentation frameworks. More... »

PAGES

297-337

References to SciGraph publications

  • 2003. Solving Semantic Problems with Odd-Length Cycles in Argumentation in SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY
  • 2019-07-24. Abstract Argumentation in Dynamic Logic: Representation, Reasoning and Change in DYNAMICS, UNCERTAINTY AND REASONING
  • 1999. A Textbook of Belief Dynamics, Solutions to exercises in NONE
  • 1999-05. A Survey of non-Prioritized Belief Revision in ERKENNTNIS
  • 2008-08. Justification logics, logics of knowledge, and conservativity in ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE
  • 1991. Belief revision and nonmonotonic logic: Two sides of the same coin? in LOGICS IN AI
  • 2020-01-03. On the Dynamics of Structured Argumentation: Modeling Changes in Default Justification Logic in FOUNDATIONS OF INFORMATION AND KNOWLEDGE SYSTEMS
  • 2011-07-05. Multi-agent Justification Logic: communication and evidence elimination in SYNTHESE
  • 2013. A Logical Theory about Dynamics in Abstract Argumentation in SCALABLE UNCERTAINTY MANAGEMENT
  • 1991. Relations between the logic of theory change and nonmonotonic logic in THE LOGIC OF THEORY CHANGE
  • 2014-04-11. Argumentation and Artificial Intelligence in HANDBOOK OF ARGUMENTATION THEORY
  • 2009-05-10. Assumption-Based Argumentation in ARGUMENTATION IN ARTIFICIAL INTELLIGENCE
  • 2009-05-10. The Toulmin Argument Model in Artificial Intelligence in ARGUMENTATION IN ARTIFICIAL INTELLIGENCE
  • 1997. Models for the logic of proofs in LOGICAL FOUNDATIONS OF COMPUTER SCIENCE
  • 1991. Non-monotonic reasoning by monotonic means in LOGICS IN AI
  • 2018-07-13. We cannot infer by accepting testimony in PHILOSOPHICAL STUDIES
  • 2012. The Logic of Justified Belief Change, Soft Evidence and Defeasible Knowledge in LOGIC, LANGUAGE, INFORMATION AND COMPUTATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10472-021-09765-z

    DOI

    http://dx.doi.org/10.1007/s10472-021-09765-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1139981294


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Theoretical Philosophy Group, Department of Philosophy and Religious Studies, Utrecht University, Utrecht, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.5477.1", 
              "name": [
                "Theoretical Philosophy Group, Department of Philosophy and Religious Studies, Utrecht University, Utrecht, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pand\u017ei\u0107", 
            "givenName": "Stipe", 
            "id": "sg:person.016443076325.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016443076325.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-007-0814-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023990749", 
              "https://doi.org/10.1007/978-94-007-0814-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11098-018-1142-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105564645", 
              "https://doi.org/10.1007/s11098-018-1142-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-98197-0_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002732163", 
              "https://doi.org/10.1007/978-0-387-98197-0_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-981-13-7791-4_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1119761757", 
              "https://doi.org/10.1007/978-981-13-7791-4_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-32621-9_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038949557", 
              "https://doi.org/10.1007/978-3-642-32621-9_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11229-011-9968-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045436839", 
              "https://doi.org/10.1007/s11229-011-9968-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-90-481-9473-5_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009646364", 
              "https://doi.org/10.1007/978-90-481-9473-5_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0018421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024859622", 
              "https://doi.org/10.1007/bfb0018421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-98197-0_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036198723", 
              "https://doi.org/10.1007/978-0-387-98197-0_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0018455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040212503", 
              "https://doi.org/10.1007/bfb0018455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-45062-7_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025424641", 
              "https://doi.org/10.1007/978-3-540-45062-7_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-030-39951-1_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124373006", 
              "https://doi.org/10.1007/978-3-030-39951-1_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005534223776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005353029", 
              "https://doi.org/10.1023/a:1005534223776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10472-009-9112-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036838626", 
              "https://doi.org/10.1007/s10472-009-9112-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-63045-7_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012984465", 
              "https://doi.org/10.1007/3-540-63045-7_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-40381-1_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044394369", 
              "https://doi.org/10.1007/978-3-642-40381-1_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0018432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007433882", 
              "https://doi.org/10.1007/bfb0018432"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-07-27", 
        "datePublishedReg": "2021-07-27", 
        "description": "This paper develops a logical theory that unifies all three standard types of argumentative attack in AI, namely rebutting, undercutting and undermining attacks. We build on default justification logic that already represents undercutting and rebutting attacks, and we add undermining attacks. Intuitively, undermining does not target default inference, as undercutting, or default conclusion, as rebutting, but rather attacks an argument\u2019s premise as a starting point for default reasoning. In default justification logic, reasoning starts from a set of premises, which is then extended by conclusions that hold by default. We argue that modeling undermining defeaters in the view of default theories requires changing the set of premises upon receiving new information. To model changes to premises, we give a dynamic aspect to default justification logic by using the techniques from the logic of belief revision. More specifically, undermining is modeled with belief revision operations that include contracting a set of premises, that is, removing some information from it. The novel combination of default reasoning and belief revision in justification logic enriches both approaches to reasoning under uncertainty. By the end of the paper, we show some important aspects of defeasible argumentation in which our logic compares favorably to structured argumentation frameworks.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10472-021-09765-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043955", 
            "issn": [
              "1012-2443", 
              "1573-7470"
            ], 
            "name": "Annals of Mathematics and Artificial Intelligence", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "90"
          }
        ], 
        "keywords": [
          "set of premises", 
          "justification logic", 
          "belief revision", 
          "default reasoning", 
          "logical theory", 
          "argument\u2019s premises", 
          "structured argumentation frameworks", 
          "defeasible argumentation", 
          "default theories", 
          "logic", 
          "reasoning", 
          "default inference", 
          "premise", 
          "argumentation framework", 
          "starting point", 
          "undermining", 
          "defeaters", 
          "theory", 
          "argumentation", 
          "rebutting", 
          "important aspect", 
          "view", 
          "aspects", 
          "revision", 
          "enriches", 
          "AI", 
          "attacks", 
          "framework", 
          "paper", 
          "point", 
          "inference", 
          "end", 
          "conclusion", 
          "dynamic aspects", 
          "default", 
          "argumentation dynamics", 
          "standard type", 
          "default conclusions", 
          "belief revision operation", 
          "set", 
          "revision operations", 
          "new information", 
          "information", 
          "novel combination", 
          "uncertainty", 
          "operation", 
          "dynamics", 
          "changes", 
          "technique", 
          "types", 
          "combination"
        ], 
        "name": "Structured argumentation dynamics", 
        "pagination": "297-337", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1139981294"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10472-021-09765-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10472-021-09765-z", 
          "https://app.dimensions.ai/details/publication/pub.1139981294"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_882.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10472-021-09765-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09765-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09765-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09765-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09765-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    189 TRIPLES      22 PREDICATES      96 URIs      68 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10472-021-09765-z schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 anzsrc-for:08
    4 anzsrc-for:0801
    5 anzsrc-for:0802
    6 schema:author Nf8b135233ad3459fa07b7383c56a4cce
    7 schema:citation sg:pub.10.1007/3-540-63045-7_27
    8 sg:pub.10.1007/978-0-387-98197-0_10
    9 sg:pub.10.1007/978-0-387-98197-0_11
    10 sg:pub.10.1007/978-3-030-39951-1_14
    11 sg:pub.10.1007/978-3-540-45062-7_36
    12 sg:pub.10.1007/978-3-642-32621-9_13
    13 sg:pub.10.1007/978-3-642-40381-1_12
    14 sg:pub.10.1007/978-90-481-9473-5_11
    15 sg:pub.10.1007/978-94-007-0814-3
    16 sg:pub.10.1007/978-981-13-7791-4_8
    17 sg:pub.10.1007/bfb0018421
    18 sg:pub.10.1007/bfb0018432
    19 sg:pub.10.1007/bfb0018455
    20 sg:pub.10.1007/s10472-009-9112-2
    21 sg:pub.10.1007/s11098-018-1142-3
    22 sg:pub.10.1007/s11229-011-9968-7
    23 sg:pub.10.1023/a:1005534223776
    24 schema:datePublished 2021-07-27
    25 schema:datePublishedReg 2021-07-27
    26 schema:description This paper develops a logical theory that unifies all three standard types of argumentative attack in AI, namely rebutting, undercutting and undermining attacks. We build on default justification logic that already represents undercutting and rebutting attacks, and we add undermining attacks. Intuitively, undermining does not target default inference, as undercutting, or default conclusion, as rebutting, but rather attacks an argument’s premise as a starting point for default reasoning. In default justification logic, reasoning starts from a set of premises, which is then extended by conclusions that hold by default. We argue that modeling undermining defeaters in the view of default theories requires changing the set of premises upon receiving new information. To model changes to premises, we give a dynamic aspect to default justification logic by using the techniques from the logic of belief revision. More specifically, undermining is modeled with belief revision operations that include contracting a set of premises, that is, removing some information from it. The novel combination of default reasoning and belief revision in justification logic enriches both approaches to reasoning under uncertainty. By the end of the paper, we show some important aspects of defeasible argumentation in which our logic compares favorably to structured argumentation frameworks.
    27 schema:genre article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree true
    30 schema:isPartOf N12ee52b3438a443b958c9532dad189d6
    31 Nd832274040884167aa2ee66661335275
    32 sg:journal.1043955
    33 schema:keywords AI
    34 argumentation
    35 argumentation dynamics
    36 argumentation framework
    37 argument’s premises
    38 aspects
    39 attacks
    40 belief revision
    41 belief revision operation
    42 changes
    43 combination
    44 conclusion
    45 default
    46 default conclusions
    47 default inference
    48 default reasoning
    49 default theories
    50 defeasible argumentation
    51 defeaters
    52 dynamic aspects
    53 dynamics
    54 end
    55 enriches
    56 framework
    57 important aspect
    58 inference
    59 information
    60 justification logic
    61 logic
    62 logical theory
    63 new information
    64 novel combination
    65 operation
    66 paper
    67 point
    68 premise
    69 reasoning
    70 rebutting
    71 revision
    72 revision operations
    73 set
    74 set of premises
    75 standard type
    76 starting point
    77 structured argumentation frameworks
    78 technique
    79 theory
    80 types
    81 uncertainty
    82 undermining
    83 view
    84 schema:name Structured argumentation dynamics
    85 schema:pagination 297-337
    86 schema:productId N527bcd9d637440968dd59bb4989a4a94
    87 N9413e4d781fb430eb3ae84409f656a3e
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139981294
    89 https://doi.org/10.1007/s10472-021-09765-z
    90 schema:sdDatePublished 2022-05-20T07:38
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher N164f59e36e20480895fc442a9b031639
    93 schema:url https://doi.org/10.1007/s10472-021-09765-z
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N12ee52b3438a443b958c9532dad189d6 schema:issueNumber 2-3
    98 rdf:type schema:PublicationIssue
    99 N164f59e36e20480895fc442a9b031639 schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 N527bcd9d637440968dd59bb4989a4a94 schema:name doi
    102 schema:value 10.1007/s10472-021-09765-z
    103 rdf:type schema:PropertyValue
    104 N9413e4d781fb430eb3ae84409f656a3e schema:name dimensions_id
    105 schema:value pub.1139981294
    106 rdf:type schema:PropertyValue
    107 Nd832274040884167aa2ee66661335275 schema:volumeNumber 90
    108 rdf:type schema:PublicationVolume
    109 Nf8b135233ad3459fa07b7383c56a4cce rdf:first sg:person.016443076325.43
    110 rdf:rest rdf:nil
    111 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Mathematical Sciences
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Applied Mathematics
    116 rdf:type schema:DefinedTerm
    117 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Information and Computing Sciences
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Artificial Intelligence and Image Processing
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Computation Theory and Mathematics
    125 rdf:type schema:DefinedTerm
    126 sg:journal.1043955 schema:issn 1012-2443
    127 1573-7470
    128 schema:name Annals of Mathematics and Artificial Intelligence
    129 schema:publisher Springer Nature
    130 rdf:type schema:Periodical
    131 sg:person.016443076325.43 schema:affiliation grid-institutes:grid.5477.1
    132 schema:familyName Pandžić
    133 schema:givenName Stipe
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016443076325.43
    135 rdf:type schema:Person
    136 sg:pub.10.1007/3-540-63045-7_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012984465
    137 https://doi.org/10.1007/3-540-63045-7_27
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/978-0-387-98197-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002732163
    140 https://doi.org/10.1007/978-0-387-98197-0_10
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/978-0-387-98197-0_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036198723
    143 https://doi.org/10.1007/978-0-387-98197-0_11
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/978-3-030-39951-1_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124373006
    146 https://doi.org/10.1007/978-3-030-39951-1_14
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/978-3-540-45062-7_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025424641
    149 https://doi.org/10.1007/978-3-540-45062-7_36
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/978-3-642-32621-9_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038949557
    152 https://doi.org/10.1007/978-3-642-32621-9_13
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/978-3-642-40381-1_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044394369
    155 https://doi.org/10.1007/978-3-642-40381-1_12
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/978-90-481-9473-5_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009646364
    158 https://doi.org/10.1007/978-90-481-9473-5_11
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/978-94-007-0814-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023990749
    161 https://doi.org/10.1007/978-94-007-0814-3
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/978-981-13-7791-4_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1119761757
    164 https://doi.org/10.1007/978-981-13-7791-4_8
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/bfb0018421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024859622
    167 https://doi.org/10.1007/bfb0018421
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/bfb0018432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007433882
    170 https://doi.org/10.1007/bfb0018432
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/bfb0018455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040212503
    173 https://doi.org/10.1007/bfb0018455
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s10472-009-9112-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036838626
    176 https://doi.org/10.1007/s10472-009-9112-2
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s11098-018-1142-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105564645
    179 https://doi.org/10.1007/s11098-018-1142-3
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s11229-011-9968-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045436839
    182 https://doi.org/10.1007/s11229-011-9968-7
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1023/a:1005534223776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005353029
    185 https://doi.org/10.1023/a:1005534223776
    186 rdf:type schema:CreativeWork
    187 grid-institutes:grid.5477.1 schema:alternateName Theoretical Philosophy Group, Department of Philosophy and Religious Studies, Utrecht University, Utrecht, The Netherlands
    188 schema:name Theoretical Philosophy Group, Department of Philosophy and Religious Studies, Utrecht University, Utrecht, The Netherlands
    189 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...