On matrices and K-relations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-07-15

AUTHORS

Robert Brijder, Marc Gyssens, Jan Van den Bussche

ABSTRACT

We show that the matrix query language MATLANG corresponds to a natural fragment of the positive relational algebra on K-relations. The fragment is defined by introducing a composition operator and restricting K-relation arities to 2. We then proceed to show that MATLANG can express all matrix queries expressible in the positive relational algebra on K-relations, when intermediate arities are restricted to 3. Thus we offer an analogue, in a model with numerical data, to the situation in classical logic, where the algebra of binary relations is equivalent to first-order logic with three variables. More... »

PAGES

181-210

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10472-021-09760-4

DOI

http://dx.doi.org/10.1007/s10472-021-09760-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1139733080


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Sciences, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.12155.32", 
          "name": [
            "Faculty of Sciences, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brijder", 
        "givenName": "Robert", 
        "id": "sg:person.01124236701.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124236701.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Sciences, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.12155.32", 
          "name": [
            "Faculty of Sciences, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gyssens", 
        "givenName": "Marc", 
        "id": "sg:person.016126431027.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016126431027.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Sciences, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.12155.32", 
          "name": [
            "Faculty of Sciences, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van den Bussche", 
        "givenName": "Jan", 
        "id": "sg:person.012021464533.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012021464533.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00370681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032494380", 
          "https://doi.org/10.1007/bf00370681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-5694-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042156914", 
          "https://doi.org/10.1007/978-94-011-5694-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-21676-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109712412", 
          "https://doi.org/10.1007/978-3-662-21676-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-030-39951-1_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124370144", 
          "https://doi.org/10.1007/978-3-030-39951-1_3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-07-15", 
    "datePublishedReg": "2021-07-15", 
    "description": "We show that the matrix query language MATLANG corresponds to a natural fragment of the positive relational algebra on K-relations. The fragment is defined by introducing a composition operator and restricting K-relation arities to 2. We then proceed to show that MATLANG can express all matrix queries expressible in the positive relational algebra on K-relations, when intermediate arities are restricted to 3. Thus we offer an analogue, in a model with numerical data, to the situation in classical logic, where the algebra of binary relations is equivalent to first-order logic with three variables.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10472-021-09760-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043955", 
        "issn": [
          "1012-2443", 
          "1573-7470"
        ], 
        "name": "Annals of Mathematics and Artificial Intelligence", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "keywords": [
      "first-order logic", 
      "natural fragments", 
      "relational algebra", 
      "logic", 
      "classical logic", 
      "binary relations", 
      "arity", 
      "relation", 
      "situation", 
      "queries", 
      "fragments", 
      "positive relational algebra", 
      "algebra", 
      "K relations", 
      "composition operators", 
      "numerical data", 
      "data", 
      "operators", 
      "matrix queries", 
      "model", 
      "variables", 
      "matrix", 
      "analogues"
    ], 
    "name": "On matrices and K-relations", 
    "pagination": "181-210", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1139733080"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10472-021-09760-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10472-021-09760-4", 
      "https://app.dimensions.ai/details/publication/pub.1139733080"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_903.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10472-021-09760-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09760-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09760-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09760-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09760-4'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      22 PREDICATES      52 URIs      40 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10472-021-09760-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Naa41f54910fe427abbb1c2292880149c
4 schema:citation sg:pub.10.1007/978-3-030-39951-1_3
5 sg:pub.10.1007/978-3-662-21676-7
6 sg:pub.10.1007/978-94-011-5694-3
7 sg:pub.10.1007/bf00370681
8 schema:datePublished 2021-07-15
9 schema:datePublishedReg 2021-07-15
10 schema:description We show that the matrix query language MATLANG corresponds to a natural fragment of the positive relational algebra on K-relations. The fragment is defined by introducing a composition operator and restricting K-relation arities to 2. We then proceed to show that MATLANG can express all matrix queries expressible in the positive relational algebra on K-relations, when intermediate arities are restricted to 3. Thus we offer an analogue, in a model with numerical data, to the situation in classical logic, where the algebra of binary relations is equivalent to first-order logic with three variables.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N0fcf87a29c944ae8b243e2934dedfced
15 N7934d9a5735443fd95393341424f149f
16 sg:journal.1043955
17 schema:keywords K relations
18 algebra
19 analogues
20 arity
21 binary relations
22 classical logic
23 composition operators
24 data
25 first-order logic
26 fragments
27 logic
28 matrix
29 matrix queries
30 model
31 natural fragments
32 numerical data
33 operators
34 positive relational algebra
35 queries
36 relation
37 relational algebra
38 situation
39 variables
40 schema:name On matrices and K-relations
41 schema:pagination 181-210
42 schema:productId N3d28c91fbf3b4f9a99eb34f11f29b5a4
43 Nd5e6c757fe4f47f29f629433f4c50c3d
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139733080
45 https://doi.org/10.1007/s10472-021-09760-4
46 schema:sdDatePublished 2022-05-20T07:39
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N4311bd0d78414b04a1d7121df820dafe
49 schema:url https://doi.org/10.1007/s10472-021-09760-4
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0fcf87a29c944ae8b243e2934dedfced schema:volumeNumber 90
54 rdf:type schema:PublicationVolume
55 N3d28c91fbf3b4f9a99eb34f11f29b5a4 schema:name doi
56 schema:value 10.1007/s10472-021-09760-4
57 rdf:type schema:PropertyValue
58 N4311bd0d78414b04a1d7121df820dafe schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N7934d9a5735443fd95393341424f149f schema:issueNumber 2-3
61 rdf:type schema:PublicationIssue
62 Naa41f54910fe427abbb1c2292880149c rdf:first sg:person.01124236701.65
63 rdf:rest Nde6228dc62d54da3acc2b7572b6f2eb8
64 Nbc3e8e2b645243d6b72382c02e5c07c3 rdf:first sg:person.012021464533.34
65 rdf:rest rdf:nil
66 Nd5e6c757fe4f47f29f629433f4c50c3d schema:name dimensions_id
67 schema:value pub.1139733080
68 rdf:type schema:PropertyValue
69 Nde6228dc62d54da3acc2b7572b6f2eb8 rdf:first sg:person.016126431027.84
70 rdf:rest Nbc3e8e2b645243d6b72382c02e5c07c3
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
75 schema:name Pure Mathematics
76 rdf:type schema:DefinedTerm
77 sg:journal.1043955 schema:issn 1012-2443
78 1573-7470
79 schema:name Annals of Mathematics and Artificial Intelligence
80 schema:publisher Springer Nature
81 rdf:type schema:Periodical
82 sg:person.01124236701.65 schema:affiliation grid-institutes:grid.12155.32
83 schema:familyName Brijder
84 schema:givenName Robert
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124236701.65
86 rdf:type schema:Person
87 sg:person.012021464533.34 schema:affiliation grid-institutes:grid.12155.32
88 schema:familyName Van den Bussche
89 schema:givenName Jan
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012021464533.34
91 rdf:type schema:Person
92 sg:person.016126431027.84 schema:affiliation grid-institutes:grid.12155.32
93 schema:familyName Gyssens
94 schema:givenName Marc
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016126431027.84
96 rdf:type schema:Person
97 sg:pub.10.1007/978-3-030-39951-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124370144
98 https://doi.org/10.1007/978-3-030-39951-1_3
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/978-3-662-21676-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109712412
101 https://doi.org/10.1007/978-3-662-21676-7
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-94-011-5694-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042156914
104 https://doi.org/10.1007/978-94-011-5694-3
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf00370681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032494380
107 https://doi.org/10.1007/bf00370681
108 rdf:type schema:CreativeWork
109 grid-institutes:grid.12155.32 schema:alternateName Faculty of Sciences, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
110 schema:name Faculty of Sciences, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...