Exploration and exploitation analysis for the sonar inspired optimization algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-07-22

AUTHORS

Alexandros Tzanetos, Georgios Dounias

ABSTRACT

In the recent years, extensive discussion takes place in literature, on the effectiveness of meta-heuristics, and especially Nature Inspired Algorithms. Usually, authors state that such an approach should embody a well-balanced exploration and exploitation strategy. Sonar Inspired Optimization (SIO) is a recently presented algorithm, which counts already a number of successful real-world applications. Its novel mechanisms provide this equilibrium between exploration and exploitation, as it has been stated in previous studies. In this work, authors prove that this equilibrium exists and also, it is one of the main reasons behind the high quality performance of SIO. More... »

PAGES

857-874

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10472-021-09755-1

DOI

http://dx.doi.org/10.1007/s10472-021-09755-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1139871775


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Financial and Management Engineering, Management and Decision Engineering Laboratory, University of the Aegean, 41 Kountouriotou Str, GR-82100, Chios, Greece", 
          "id": "http://www.grid.ac/institutes/grid.7144.6", 
          "name": [
            "Department of Financial and Management Engineering, Management and Decision Engineering Laboratory, University of the Aegean, 41 Kountouriotou Str, GR-82100, Chios, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tzanetos", 
        "givenName": "Alexandros", 
        "id": "sg:person.010733611622.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010733611622.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Financial and Management Engineering, Management and Decision Engineering Laboratory, University of the Aegean, 41 Kountouriotou Str, GR-82100, Chios, Greece", 
          "id": "http://www.grid.ac/institutes/grid.7144.6", 
          "name": [
            "Department of Financial and Management Engineering, Management and Decision Engineering Laboratory, University of the Aegean, 41 Kountouriotou Str, GR-82100, Chios, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dounias", 
        "givenName": "Georgios", 
        "id": "sg:person.01330177075.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330177075.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12530-018-9250-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106388755", 
          "https://doi.org/10.1007/s12530-018-9250-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-030-38629-0_22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124222265", 
          "https://doi.org/10.1007/978-3-030-38629-0_22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-018-3592-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105292238", 
          "https://doi.org/10.1007/s00521-018-3592-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-015-1925-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014129059", 
          "https://doi.org/10.1007/s00521-015-1925-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-72550-5_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100316843", 
          "https://doi.org/10.1007/978-3-319-72550-5_3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-07-22", 
    "datePublishedReg": "2021-07-22", 
    "description": "In the recent years, extensive discussion takes place in literature, on the effectiveness of meta-heuristics, and especially Nature Inspired Algorithms. Usually, authors state that such an approach should embody a well-balanced exploration and exploitation strategy. Sonar Inspired Optimization (SIO) is a recently presented algorithm, which counts already a number of successful real-world applications. Its novel mechanisms provide this equilibrium between exploration and exploitation, as it has been stated in previous studies. In this work, authors prove that this equilibrium exists and also, it is one of the main reasons behind the high quality performance of SIO.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10472-021-09755-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043955", 
        "issn": [
          "1012-2443", 
          "1573-7470"
        ], 
        "name": "Annals of Mathematics and Artificial Intelligence", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8-9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "89"
      }
    ], 
    "keywords": [
      "successful real-world applications", 
      "optimization algorithm", 
      "real-world applications", 
      "algorithm", 
      "exploitation analysis", 
      "high-quality performance", 
      "equilibrium", 
      "optimization", 
      "extensive discussion", 
      "applications", 
      "approach", 
      "recent years", 
      "effectiveness", 
      "sonar", 
      "exploitation strategies", 
      "number", 
      "quality performance", 
      "performance", 
      "authors", 
      "work", 
      "exploration", 
      "nature", 
      "analysis", 
      "literature", 
      "exploitation", 
      "main reason", 
      "discussion", 
      "SiO", 
      "strategies", 
      "place", 
      "previous studies", 
      "reasons", 
      "mechanism", 
      "study", 
      "years", 
      "novel mechanism"
    ], 
    "name": "Exploration and exploitation analysis for the sonar inspired optimization algorithm", 
    "pagination": "857-874", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1139871775"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10472-021-09755-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10472-021-09755-1", 
      "https://app.dimensions.ai/details/publication/pub.1139871775"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T19:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_913.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10472-021-09755-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09755-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09755-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09755-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10472-021-09755-1'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      22 PREDICATES      66 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10472-021-09755-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf2b0e4d569af421494e00e92f223ba3c
4 schema:citation sg:pub.10.1007/978-3-030-38629-0_22
5 sg:pub.10.1007/978-3-319-72550-5_3
6 sg:pub.10.1007/s00521-015-1925-9
7 sg:pub.10.1007/s00521-018-3592-0
8 sg:pub.10.1007/s12530-018-9250-z
9 schema:datePublished 2021-07-22
10 schema:datePublishedReg 2021-07-22
11 schema:description In the recent years, extensive discussion takes place in literature, on the effectiveness of meta-heuristics, and especially Nature Inspired Algorithms. Usually, authors state that such an approach should embody a well-balanced exploration and exploitation strategy. Sonar Inspired Optimization (SIO) is a recently presented algorithm, which counts already a number of successful real-world applications. Its novel mechanisms provide this equilibrium between exploration and exploitation, as it has been stated in previous studies. In this work, authors prove that this equilibrium exists and also, it is one of the main reasons behind the high quality performance of SIO.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N08a7a6ee711449eea26cc33fdc64c1e1
16 Nc53e9451ff344e9eb8b5a9faac21261a
17 sg:journal.1043955
18 schema:keywords SiO
19 algorithm
20 analysis
21 applications
22 approach
23 authors
24 discussion
25 effectiveness
26 equilibrium
27 exploitation
28 exploitation analysis
29 exploitation strategies
30 exploration
31 extensive discussion
32 high-quality performance
33 literature
34 main reason
35 mechanism
36 nature
37 novel mechanism
38 number
39 optimization
40 optimization algorithm
41 performance
42 place
43 previous studies
44 quality performance
45 real-world applications
46 reasons
47 recent years
48 sonar
49 strategies
50 study
51 successful real-world applications
52 work
53 years
54 schema:name Exploration and exploitation analysis for the sonar inspired optimization algorithm
55 schema:pagination 857-874
56 schema:productId N366bd9a335724b1dafe2ffa355dde53c
57 Nedd30b98a702467f87f8d6aa3f48aba2
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139871775
59 https://doi.org/10.1007/s10472-021-09755-1
60 schema:sdDatePublished 2022-01-01T19:04
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nba100f9224cc40038955571052f8403c
63 schema:url https://doi.org/10.1007/s10472-021-09755-1
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N08a7a6ee711449eea26cc33fdc64c1e1 schema:issueNumber 8-9
68 rdf:type schema:PublicationIssue
69 N366bd9a335724b1dafe2ffa355dde53c schema:name dimensions_id
70 schema:value pub.1139871775
71 rdf:type schema:PropertyValue
72 N3baa12a194d84748ac94c5f074d2a524 rdf:first sg:person.01330177075.30
73 rdf:rest rdf:nil
74 Nba100f9224cc40038955571052f8403c schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Nc53e9451ff344e9eb8b5a9faac21261a schema:volumeNumber 89
77 rdf:type schema:PublicationVolume
78 Nedd30b98a702467f87f8d6aa3f48aba2 schema:name doi
79 schema:value 10.1007/s10472-021-09755-1
80 rdf:type schema:PropertyValue
81 Nf2b0e4d569af421494e00e92f223ba3c rdf:first sg:person.010733611622.39
82 rdf:rest N3baa12a194d84748ac94c5f074d2a524
83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
84 schema:name Information and Computing Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
87 schema:name Artificial Intelligence and Image Processing
88 rdf:type schema:DefinedTerm
89 sg:journal.1043955 schema:issn 1012-2443
90 1573-7470
91 schema:name Annals of Mathematics and Artificial Intelligence
92 schema:publisher Springer Nature
93 rdf:type schema:Periodical
94 sg:person.010733611622.39 schema:affiliation grid-institutes:grid.7144.6
95 schema:familyName Tzanetos
96 schema:givenName Alexandros
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010733611622.39
98 rdf:type schema:Person
99 sg:person.01330177075.30 schema:affiliation grid-institutes:grid.7144.6
100 schema:familyName Dounias
101 schema:givenName Georgios
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330177075.30
103 rdf:type schema:Person
104 sg:pub.10.1007/978-3-030-38629-0_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124222265
105 https://doi.org/10.1007/978-3-030-38629-0_22
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-3-319-72550-5_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100316843
108 https://doi.org/10.1007/978-3-319-72550-5_3
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00521-015-1925-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014129059
111 https://doi.org/10.1007/s00521-015-1925-9
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s00521-018-3592-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105292238
114 https://doi.org/10.1007/s00521-018-3592-0
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s12530-018-9250-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1106388755
117 https://doi.org/10.1007/s12530-018-9250-z
118 rdf:type schema:CreativeWork
119 grid-institutes:grid.7144.6 schema:alternateName Department of Financial and Management Engineering, Management and Decision Engineering Laboratory, University of the Aegean, 41 Kountouriotou Str, GR-82100, Chios, Greece
120 schema:name Department of Financial and Management Engineering, Management and Decision Engineering Laboratory, University of the Aegean, 41 Kountouriotou Str, GR-82100, Chios, Greece
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...