Complexity and approximability of the Euclidean generalized traveling salesman problem in grid clusters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-28

AUTHORS

Michael Khachay, Katherine Neznakhina

ABSTRACT

We consider the geometric version of the well-known Generalized Traveling Salesman Problem introduced in 2015 by Bhattacharya et al. that is called the Euclidean Generalized Traveling Salesman Problem in Grid Clusters (EGTSP-GC). They proved the intractability of the problem and proposed first polynomial time algorithms with fixed approximation factors. The extension of these results in the field of constructing the polynomial time approximation schemes (PTAS) and the description of non-trivial polynomial time solvable subclasses for the EGTSP-GC appear to be relevant in the light of the classic C. Papadimitriou result on the intractability of the Euclidean TSP and recent inapproximability results for the Traveling Salesman Problem with Neighborhoods (TSPN) in the case of discrete neighborhoods. In this paper, we propose Efficient Polynomial Time Approximation Schemes (EPTAS) for two special cases of the EGTSP-GC, when the number of clusters k=O(logn) and k=n−O(logn). Also, we show that any time, when one of the grid dimensions (height or width) is fixed, the EGTSP-GC can be solved to optimality in polynomial time. As a consequence, we specify a novel non-trivial polynomially solvable subclass of the Euclidean TSP in the plane. More... »

PAGES

1-17

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10472-019-09626-w

DOI

http://dx.doi.org/10.1007/s10472-019-09626-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113052214


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Omsk State Technical University", 
          "id": "https://www.grid.ac/institutes/grid.445434.6", 
          "name": [
            "Krasovsky Institute of Mathematics and Mechanics, Ekaterinburg, Russia", 
            "Ural Federal University, Ekaterinburg, Russia", 
            "Omsk State Technical University, Omsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khachay", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Federal University", 
          "id": "https://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Krasovsky Institute of Mathematics and Mechanics, Ekaterinburg, Russia", 
            "Ural Federal University, Ekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neznakhina", 
        "givenName": "Katherine", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/b101971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001973382", 
          "https://doi.org/10.1007/b101971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b101971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001973382", 
          "https://doi.org/10.1007/b101971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2850418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002258238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-218x(94)90008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003592840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0081543815050107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005061317", 
          "https://doi.org/10.1134/s0081543815050107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ifacol.2016.07.767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005153131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10288-006-0012-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011567964", 
          "https://doi.org/10.1007/s10288-006-0012-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3975(77)90012-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026062511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/290179.290180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033022089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-26626-8_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033323021", 
          "https://doi.org/10.1007/978-3-319-26626-8_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018939709890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044838848", 
          "https://doi.org/10.1023/a:1018939709890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10898-015-0391-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045968127", 
          "https://doi.org/10.1007/s10898-015-0391-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/050636589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539796309764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062880134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218195909002897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062960494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.13.1.56.9748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064707032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.10.4.527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064722701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.45.3.378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064730957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0081543816090054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074216921", 
          "https://doi.org/10.1134/s0081543816090054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0081543816090054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074216921", 
          "https://doi.org/10.1134/s0081543816090054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/3573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098912951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-73013-4_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099733368", 
          "https://doi.org/10.1007/978-3-319-73013-4_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0081543817090127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101043128", 
          "https://doi.org/10.1134/s0081543817090127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-93800-4_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104695149", 
          "https://doi.org/10.1007/978-3-319-93800-4_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-93800-4_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104695149", 
          "https://doi.org/10.1007/978-3-319-93800-4_6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-28", 
    "datePublishedReg": "2019-03-28", 
    "description": "We consider the geometric version of the well-known Generalized Traveling Salesman Problem introduced in 2015 by Bhattacharya et al. that is called the Euclidean Generalized Traveling Salesman Problem in Grid Clusters (EGTSP-GC). They proved the intractability of the problem and proposed first polynomial time algorithms with fixed approximation factors. The extension of these results in the field of constructing the polynomial time approximation schemes (PTAS) and the description of non-trivial polynomial time solvable subclasses for the EGTSP-GC appear to be relevant in the light of the classic C. Papadimitriou result on the intractability of the Euclidean TSP and recent inapproximability results for the Traveling Salesman Problem with Neighborhoods (TSPN) in the case of discrete neighborhoods. In this paper, we propose Efficient Polynomial Time Approximation Schemes (EPTAS) for two special cases of the EGTSP-GC, when the number of clusters k=O(logn) and k=n\u2212O(logn). Also, we show that any time, when one of the grid dimensions (height or width) is fixed, the EGTSP-GC can be solved to optimality in polynomial time. As a consequence, we specify a novel non-trivial polynomially solvable subclass of the Euclidean TSP in the plane.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10472-019-09626-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4895706", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043955", 
        "issn": [
          "1012-2443", 
          "1573-7470"
        ], 
        "name": "Annals of Mathematics and Artificial Intelligence", 
        "type": "Periodical"
      }
    ], 
    "name": "Complexity and approximability of the Euclidean generalized traveling salesman problem in grid clusters", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "375d4c1f67d07a13ef5b57364882ddee2ac90f4ee1b20d1b86a504c8a03c57d6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10472-019-09626-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113052214"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10472-019-09626-w", 
      "https://app.dimensions.ai/details/publication/pub.1113052214"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78964_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10472-019-09626-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10472-019-09626-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10472-019-09626-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10472-019-09626-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10472-019-09626-w'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      46 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10472-019-09626-w schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N802a747605bb4195a7b684e20c757966
4 schema:citation sg:pub.10.1007/978-3-319-26626-8_9
5 sg:pub.10.1007/978-3-319-73013-4_32
6 sg:pub.10.1007/978-3-319-93800-4_6
7 sg:pub.10.1007/b101971
8 sg:pub.10.1007/s10288-006-0012-6
9 sg:pub.10.1007/s10898-015-0391-3
10 sg:pub.10.1023/a:1018939709890
11 sg:pub.10.1134/s0081543815050107
12 sg:pub.10.1134/s0081543816090054
13 sg:pub.10.1134/s0081543817090127
14 https://doi.org/10.1016/0166-218x(94)90008-6
15 https://doi.org/10.1016/0304-3975(77)90012-3
16 https://doi.org/10.1016/j.ifacol.2016.07.767
17 https://doi.org/10.1137/050636589
18 https://doi.org/10.1137/s0097539796309764
19 https://doi.org/10.1142/3573
20 https://doi.org/10.1142/s0218195909002897
21 https://doi.org/10.1145/2850418
22 https://doi.org/10.1145/290179.290180
23 https://doi.org/10.1287/ijoc.13.1.56.9748
24 https://doi.org/10.1287/moor.10.4.527
25 https://doi.org/10.1287/opre.45.3.378
26 schema:datePublished 2019-03-28
27 schema:datePublishedReg 2019-03-28
28 schema:description We consider the geometric version of the well-known Generalized Traveling Salesman Problem introduced in 2015 by Bhattacharya et al. that is called the Euclidean Generalized Traveling Salesman Problem in Grid Clusters (EGTSP-GC). They proved the intractability of the problem and proposed first polynomial time algorithms with fixed approximation factors. The extension of these results in the field of constructing the polynomial time approximation schemes (PTAS) and the description of non-trivial polynomial time solvable subclasses for the EGTSP-GC appear to be relevant in the light of the classic C. Papadimitriou result on the intractability of the Euclidean TSP and recent inapproximability results for the Traveling Salesman Problem with Neighborhoods (TSPN) in the case of discrete neighborhoods. In this paper, we propose Efficient Polynomial Time Approximation Schemes (EPTAS) for two special cases of the EGTSP-GC, when the number of clusters k=O(logn) and k=n−O(logn). Also, we show that any time, when one of the grid dimensions (height or width) is fixed, the EGTSP-GC can be solved to optimality in polynomial time. As a consequence, we specify a novel non-trivial polynomially solvable subclass of the Euclidean TSP in the plane.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf sg:journal.1043955
33 schema:name Complexity and approximability of the Euclidean generalized traveling salesman problem in grid clusters
34 schema:pagination 1-17
35 schema:productId N9799d1ec4bfc42a3adb1bc206d4a6c9b
36 Ne15cdfc354fe4d2f942877c4c4b86e8b
37 Ne70d561b83714a068eb789e5d00d45a8
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113052214
39 https://doi.org/10.1007/s10472-019-09626-w
40 schema:sdDatePublished 2019-04-11T13:20
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N237ca4f166344a158136938c62c96b2d
43 schema:url https://link.springer.com/10.1007%2Fs10472-019-09626-w
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N08d1be6d8dff4b0fbf7af5b4b156e20f schema:affiliation https://www.grid.ac/institutes/grid.412761.7
48 schema:familyName Neznakhina
49 schema:givenName Katherine
50 rdf:type schema:Person
51 N237ca4f166344a158136938c62c96b2d schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N802a747605bb4195a7b684e20c757966 rdf:first Ned8d00b00d884ab58535048dc4a02459
54 rdf:rest Nb3ca9db2ef8b4c038431a2fbd2513864
55 N9799d1ec4bfc42a3adb1bc206d4a6c9b schema:name readcube_id
56 schema:value 375d4c1f67d07a13ef5b57364882ddee2ac90f4ee1b20d1b86a504c8a03c57d6
57 rdf:type schema:PropertyValue
58 Nb3ca9db2ef8b4c038431a2fbd2513864 rdf:first N08d1be6d8dff4b0fbf7af5b4b156e20f
59 rdf:rest rdf:nil
60 Ne15cdfc354fe4d2f942877c4c4b86e8b schema:name dimensions_id
61 schema:value pub.1113052214
62 rdf:type schema:PropertyValue
63 Ne70d561b83714a068eb789e5d00d45a8 schema:name doi
64 schema:value 10.1007/s10472-019-09626-w
65 rdf:type schema:PropertyValue
66 Ned8d00b00d884ab58535048dc4a02459 schema:affiliation https://www.grid.ac/institutes/grid.445434.6
67 schema:familyName Khachay
68 schema:givenName Michael
69 rdf:type schema:Person
70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information and Computing Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
74 schema:name Computation Theory and Mathematics
75 rdf:type schema:DefinedTerm
76 sg:grant.4895706 http://pending.schema.org/fundedItem sg:pub.10.1007/s10472-019-09626-w
77 rdf:type schema:MonetaryGrant
78 sg:journal.1043955 schema:issn 1012-2443
79 1573-7470
80 schema:name Annals of Mathematics and Artificial Intelligence
81 rdf:type schema:Periodical
82 sg:pub.10.1007/978-3-319-26626-8_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033323021
83 https://doi.org/10.1007/978-3-319-26626-8_9
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/978-3-319-73013-4_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099733368
86 https://doi.org/10.1007/978-3-319-73013-4_32
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/978-3-319-93800-4_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104695149
89 https://doi.org/10.1007/978-3-319-93800-4_6
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/b101971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001973382
92 https://doi.org/10.1007/b101971
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s10288-006-0012-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011567964
95 https://doi.org/10.1007/s10288-006-0012-6
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s10898-015-0391-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045968127
98 https://doi.org/10.1007/s10898-015-0391-3
99 rdf:type schema:CreativeWork
100 sg:pub.10.1023/a:1018939709890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044838848
101 https://doi.org/10.1023/a:1018939709890
102 rdf:type schema:CreativeWork
103 sg:pub.10.1134/s0081543815050107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005061317
104 https://doi.org/10.1134/s0081543815050107
105 rdf:type schema:CreativeWork
106 sg:pub.10.1134/s0081543816090054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074216921
107 https://doi.org/10.1134/s0081543816090054
108 rdf:type schema:CreativeWork
109 sg:pub.10.1134/s0081543817090127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101043128
110 https://doi.org/10.1134/s0081543817090127
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0166-218x(94)90008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003592840
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0304-3975(77)90012-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026062511
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.ifacol.2016.07.767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005153131
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1137/050636589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846406
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1137/s0097539796309764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880134
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1142/3573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098912951
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1142/s0218195909002897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062960494
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1145/2850418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002258238
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1145/290179.290180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033022089
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1287/ijoc.13.1.56.9748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064707032
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1287/moor.10.4.527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064722701
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1287/opre.45.3.378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064730957
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.412761.7 schema:alternateName Ural Federal University
137 schema:name Krasovsky Institute of Mathematics and Mechanics, Ekaterinburg, Russia
138 Ural Federal University, Ekaterinburg, Russia
139 rdf:type schema:Organization
140 https://www.grid.ac/institutes/grid.445434.6 schema:alternateName Omsk State Technical University
141 schema:name Krasovsky Institute of Mathematics and Mechanics, Ekaterinburg, Russia
142 Omsk State Technical University, Omsk, Russia
143 Ural Federal University, Ekaterinburg, Russia
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...