Local and global symmetry breaking in itemset mining View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05

AUTHORS

Belaïd Benhamou

ABSTRACT

The concept of symmetry has been extensively studied in the field of constraint programming and in the propositional satisfiability. Several methods for detection and removal of these symmetries have been developed, and their use in known solvers of these domains improved dramatically their effectiveness on a big variety of problems considered difficult to solve. The concept of symmetry may be exported to other areas where some structures can be exploited effectively. Particularly, in the area of data mining where some tasks can be expressed as constraints or logical formulas. We are interested here, by the detection and elimination of local and global symmetries in the item-set mining problem. Recent works have provided effective encodings as Boolean constraints for these data mining tasks and some idea on symmetry elimination in this area begin to appear, but still few and the techniques presented are often on global symmetry that is detected and eliminated statically in a preprocessing phase. In this work we study the notion of local symmetry and compare it to global symmetry for the itemset mining problem. We show how local symmetries of the boolean encoding can be detected dynamically and give some properties that allow to eliminate theses symmetries in SAT-based itemset mining solvers in order to enhance their efficiency. More... »

PAGES

91-112

References to SciGraph publications

  • 2000. AVAL: An Enumerative Method for SAT in COMPUTATIONAL LOGIC — CL 2000
  • 2004-05. Pushing Convertible Constraints in Frequent Itemset Mining in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2003-07. DualMiner: A Dual-Pruning Algorithm for Itemsets with Constraints in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2007. Local Symmetry Breaking During Search in CSPs in PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING – CP 2007
  • 1992. Theoretical study of symmetries in propositional calculus and applications in AUTOMATED DEDUCTION—CADE-11
  • 1994-02. Tractability through symmetries in propositional calculus in JOURNAL OF AUTOMATED REASONING
  • 1985-08. Short proofs for tricky formulas in ACTA INFORMATICA
  • 2010-11-18. Generalizing Itemset Mining in a Constraint Programming Setting in INDUCTIVE DATABASES AND CONSTRAINT-BASED DATA MINING
  • 2010. Mining Graphs with Constraints on Symmetry and Diameter in WEB-AGE INFORMATION MANAGEMENT
  • 2013. The Top-k Frequent Closed Itemset Mining Using Top-k SAT Problem in ADVANCED INFORMATION SYSTEMS ENGINEERING
  • 2005. Uncovering and Reducing Hidden Combinatorics in Guigues-Duquenne Bases in FORMAL CONCEPT ANALYSIS
  • 1993. On the satisfiability of symmetrical constrained satisfaction problems in METHODOLOGIES FOR INTELLIGENT SYSTEMS
  • 2006. Symmetric Item Set Mining Based on Zero-Suppressed BDDs in DISCOVERY SCIENCE
  • 2010. Constraint Programming for Mining n-ary Patterns in PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING – CP 2010
  • 2012. Hierarchical Clustering for Finding Symmetries and Other Patterns in Massive, High Dimensional Datasets in DATA MINING: FOUNDATIONS AND INTELLIGENT PARADIGMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10472-016-9528-4

    DOI

    http://dx.doi.org/10.1007/s10472-016-9528-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021774085


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire des Sciences de l'Information et des Syst\u00e8mes", 
              "id": "https://www.grid.ac/institutes/grid.462878.7", 
              "name": [
                "Aix-Marseille Universit\u00e9, Laboratoire des Sciences de l\u2019information et des Syst\u00e8mes (LSIS), Domaine Universitaire de Saint J\u00e9r\u00f4me, Avenue Escadrille Normandie Niemen, 13397, Marseille Cedex, 20, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benhamou", 
            "givenName": "Bela\u00efd", 
            "id": "sg:person.011525467135.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011525467135.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1024076020895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000548340", 
              "https://doi.org/10.1023/a:1024076020895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2505515.2505577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003047534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44957-4_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005320932", 
              "https://doi.org/10.1007/3-540-44957-4_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.artint.2011.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013588077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:dami.0000023674.74932.4c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014610575", 
              "https://doi.org/10.1023/b:dami.0000023674.74932.4c"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2245276.2245302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020812159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/342009.335372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025244221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15396-9_44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026484336", 
              "https://doi.org/10.1007/978-3-642-15396-9_44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15396-9_44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026484336", 
              "https://doi.org/10.1007/978-3-642-15396-9_44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00265682", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028386394", 
              "https://doi.org/10.1007/bf00265682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00265682", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028386394", 
              "https://doi.org/10.1007/bf00265682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-7738-0_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028437574", 
              "https://doi.org/10.1007/978-1-4419-7738-0_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4419-7738-0_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028437574", 
              "https://doi.org/10.1007/978-1-4419-7738-0_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/170035.170072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028726331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/775832.776042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035371382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-55602-8_172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039981868", 
              "https://doi.org/10.1007/3-540-55602-8_172"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-16720-1_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040741096", 
              "https://doi.org/10.1007/978-3-642-16720-1_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-16720-1_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040741096", 
              "https://doi.org/10.1007/978-3-642-16720-1_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74970-7_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040854717", 
              "https://doi.org/10.1007/978-3-540-74970-7_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74970-7_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040854717", 
              "https://doi.org/10.1007/978-3-540-74970-7_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-56804-2_33", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041303365", 
              "https://doi.org/10.1007/3-540-56804-2_33"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-40994-3_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042319837", 
              "https://doi.org/10.1007/978-3-642-40994-3_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11893318_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042574121", 
              "https://doi.org/10.1007/11893318_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11893318_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042574121", 
              "https://doi.org/10.1007/11893318_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.datak.2006.02.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043891648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-23166-7_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044236369", 
              "https://doi.org/10.1007/978-3-642-23166-7_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3923/itj.2010.1278.1293", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045002749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-32262-7_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045147947", 
              "https://doi.org/10.1007/978-3-540-32262-7_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-32262-7_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045147947", 
              "https://doi.org/10.1007/978-3-540-32262-7_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00881844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051844332", 
              "https://doi.org/10.1007/bf00881844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcad.2003.816218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061536918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2005.166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061661407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tkde.2005.60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061661463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ictai.2013.78", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094203793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icde.2001.914857", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095061845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5220/0005078200860096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099334180"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-05", 
        "datePublishedReg": "2017-05-01", 
        "description": "The concept of symmetry has been extensively studied in the field of constraint programming and in the propositional satisfiability. Several methods for detection and removal of these symmetries have been developed, and their use in known solvers of these domains improved dramatically their effectiveness on a big variety of problems considered difficult to solve. The concept of symmetry may be exported to other areas where some structures can be exploited effectively. Particularly, in the area of data mining where some tasks can be expressed as constraints or logical formulas. We are interested here, by the detection and elimination of local and global symmetries in the item-set mining problem. Recent works have provided effective encodings as Boolean constraints for these data mining tasks and some idea on symmetry elimination in this area begin to appear, but still few and the techniques presented are often on global symmetry that is detected and eliminated statically in a preprocessing phase. In this work we study the notion of local symmetry and compare it to global symmetry for the itemset mining problem. We show how local symmetries of the boolean encoding can be detected dynamically and give some properties that allow to eliminate theses symmetries in SAT-based itemset mining solvers in order to enhance their efficiency.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10472-016-9528-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043955", 
            "issn": [
              "1012-2443", 
              "1573-7470"
            ], 
            "name": "Annals of Mathematics and Artificial Intelligence", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "80"
          }
        ], 
        "name": "Local and global symmetry breaking in itemset mining", 
        "pagination": "91-112", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "67bd635f4e5604ff2d7e49e3e57687b38226e45734bac47341aa3c66b0d6c968"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10472-016-9528-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021774085"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10472-016-9528-4", 
          "https://app.dimensions.ai/details/publication/pub.1021774085"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87079_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10472-016-9528-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10472-016-9528-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10472-016-9528-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10472-016-9528-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10472-016-9528-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    163 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10472-016-9528-4 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Na2ea0acd761a440886f9d625165e2e5b
    4 schema:citation sg:pub.10.1007/11893318_35
    5 sg:pub.10.1007/3-540-44957-4_25
    6 sg:pub.10.1007/3-540-55602-8_172
    7 sg:pub.10.1007/3-540-56804-2_33
    8 sg:pub.10.1007/978-1-4419-7738-0_5
    9 sg:pub.10.1007/978-3-540-32262-7_16
    10 sg:pub.10.1007/978-3-540-74970-7_16
    11 sg:pub.10.1007/978-3-642-15396-9_44
    12 sg:pub.10.1007/978-3-642-16720-1_1
    13 sg:pub.10.1007/978-3-642-23166-7_5
    14 sg:pub.10.1007/978-3-642-40994-3_26
    15 sg:pub.10.1007/bf00265682
    16 sg:pub.10.1007/bf00881844
    17 sg:pub.10.1023/a:1024076020895
    18 sg:pub.10.1023/b:dami.0000023674.74932.4c
    19 https://doi.org/10.1016/j.artint.2011.05.002
    20 https://doi.org/10.1016/j.datak.2006.02.006
    21 https://doi.org/10.1109/icde.2001.914857
    22 https://doi.org/10.1109/ictai.2013.78
    23 https://doi.org/10.1109/tcad.2003.816218
    24 https://doi.org/10.1109/tkde.2005.166
    25 https://doi.org/10.1109/tkde.2005.60
    26 https://doi.org/10.1145/170035.170072
    27 https://doi.org/10.1145/2245276.2245302
    28 https://doi.org/10.1145/2505515.2505577
    29 https://doi.org/10.1145/342009.335372
    30 https://doi.org/10.1145/775832.776042
    31 https://doi.org/10.3923/itj.2010.1278.1293
    32 https://doi.org/10.5220/0005078200860096
    33 schema:datePublished 2017-05
    34 schema:datePublishedReg 2017-05-01
    35 schema:description The concept of symmetry has been extensively studied in the field of constraint programming and in the propositional satisfiability. Several methods for detection and removal of these symmetries have been developed, and their use in known solvers of these domains improved dramatically their effectiveness on a big variety of problems considered difficult to solve. The concept of symmetry may be exported to other areas where some structures can be exploited effectively. Particularly, in the area of data mining where some tasks can be expressed as constraints or logical formulas. We are interested here, by the detection and elimination of local and global symmetries in the item-set mining problem. Recent works have provided effective encodings as Boolean constraints for these data mining tasks and some idea on symmetry elimination in this area begin to appear, but still few and the techniques presented are often on global symmetry that is detected and eliminated statically in a preprocessing phase. In this work we study the notion of local symmetry and compare it to global symmetry for the itemset mining problem. We show how local symmetries of the boolean encoding can be detected dynamically and give some properties that allow to eliminate theses symmetries in SAT-based itemset mining solvers in order to enhance their efficiency.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf Na0bd9fea3ff64c968ef56879408e5830
    40 Nd38adc3c32114fc98205caa7a921d0d5
    41 sg:journal.1043955
    42 schema:name Local and global symmetry breaking in itemset mining
    43 schema:pagination 91-112
    44 schema:productId N3d19ef6b91684aea91c32e419f99fff3
    45 Ndc6d5d68ef8941c0b8fa02af6958d740
    46 Ne8a27929b02e431ea6c97cecb490f1e3
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021774085
    48 https://doi.org/10.1007/s10472-016-9528-4
    49 schema:sdDatePublished 2019-04-11T12:21
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N9583a4e4fd934b92819a3d6e38dc87ac
    52 schema:url https://link.springer.com/10.1007%2Fs10472-016-9528-4
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N3d19ef6b91684aea91c32e419f99fff3 schema:name readcube_id
    57 schema:value 67bd635f4e5604ff2d7e49e3e57687b38226e45734bac47341aa3c66b0d6c968
    58 rdf:type schema:PropertyValue
    59 N9583a4e4fd934b92819a3d6e38dc87ac schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 Na0bd9fea3ff64c968ef56879408e5830 schema:volumeNumber 80
    62 rdf:type schema:PublicationVolume
    63 Na2ea0acd761a440886f9d625165e2e5b rdf:first sg:person.011525467135.35
    64 rdf:rest rdf:nil
    65 Nd38adc3c32114fc98205caa7a921d0d5 schema:issueNumber 1
    66 rdf:type schema:PublicationIssue
    67 Ndc6d5d68ef8941c0b8fa02af6958d740 schema:name dimensions_id
    68 schema:value pub.1021774085
    69 rdf:type schema:PropertyValue
    70 Ne8a27929b02e431ea6c97cecb490f1e3 schema:name doi
    71 schema:value 10.1007/s10472-016-9528-4
    72 rdf:type schema:PropertyValue
    73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Information and Computing Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Artificial Intelligence and Image Processing
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1043955 schema:issn 1012-2443
    80 1573-7470
    81 schema:name Annals of Mathematics and Artificial Intelligence
    82 rdf:type schema:Periodical
    83 sg:person.011525467135.35 schema:affiliation https://www.grid.ac/institutes/grid.462878.7
    84 schema:familyName Benhamou
    85 schema:givenName Belaïd
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011525467135.35
    87 rdf:type schema:Person
    88 sg:pub.10.1007/11893318_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042574121
    89 https://doi.org/10.1007/11893318_35
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/3-540-44957-4_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005320932
    92 https://doi.org/10.1007/3-540-44957-4_25
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/3-540-55602-8_172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039981868
    95 https://doi.org/10.1007/3-540-55602-8_172
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/3-540-56804-2_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041303365
    98 https://doi.org/10.1007/3-540-56804-2_33
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/978-1-4419-7738-0_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028437574
    101 https://doi.org/10.1007/978-1-4419-7738-0_5
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/978-3-540-32262-7_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045147947
    104 https://doi.org/10.1007/978-3-540-32262-7_16
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/978-3-540-74970-7_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040854717
    107 https://doi.org/10.1007/978-3-540-74970-7_16
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/978-3-642-15396-9_44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026484336
    110 https://doi.org/10.1007/978-3-642-15396-9_44
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/978-3-642-16720-1_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040741096
    113 https://doi.org/10.1007/978-3-642-16720-1_1
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/978-3-642-23166-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044236369
    116 https://doi.org/10.1007/978-3-642-23166-7_5
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/978-3-642-40994-3_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042319837
    119 https://doi.org/10.1007/978-3-642-40994-3_26
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/bf00265682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028386394
    122 https://doi.org/10.1007/bf00265682
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/bf00881844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051844332
    125 https://doi.org/10.1007/bf00881844
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1023/a:1024076020895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000548340
    128 https://doi.org/10.1023/a:1024076020895
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1023/b:dami.0000023674.74932.4c schema:sameAs https://app.dimensions.ai/details/publication/pub.1014610575
    131 https://doi.org/10.1023/b:dami.0000023674.74932.4c
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.artint.2011.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013588077
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.datak.2006.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043891648
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1109/icde.2001.914857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095061845
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/ictai.2013.78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094203793
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/tcad.2003.816218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061536918
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/tkde.2005.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661407
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/tkde.2005.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661463
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1145/170035.170072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028726331
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1145/2245276.2245302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020812159
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1145/2505515.2505577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003047534
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1145/342009.335372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025244221
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1145/775832.776042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035371382
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.3923/itj.2010.1278.1293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045002749
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.5220/0005078200860096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099334180
    160 rdf:type schema:CreativeWork
    161 https://www.grid.ac/institutes/grid.462878.7 schema:alternateName Laboratoire des Sciences de l'Information et des Systèmes
    162 schema:name Aix-Marseille Université, Laboratoire des Sciences de l’information et des Systèmes (LSIS), Domaine Universitaire de Saint Jérôme, Avenue Escadrille Normandie Niemen, 13397, Marseille Cedex, 20, France
    163 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...