Mining closed patterns in relational, graph and network data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-12

AUTHORS

Gemma C. Garriga, Roni Khardon, Luc De Raedt

ABSTRACT

Recent theoretical insights have led to the introduction of efficient algorithms for mining closed item-sets. This paper investigates potential generalizations of this paradigm to mine closed patterns in relational, graph and network databases. Several semantics and associated definitions for closed patterns in relational data have been introduced in previous work, but the differences among these and the implications of the choice of semantics was not clear. The paper investigates these implications in the context of generalizing the LCM algorithm, an algorithm for enumerating closed item-sets. LCM is attractive since its run time is linear in the number of closed patterns and since it does not need to store the patterns output in order to avoid duplicates, further reducing memory signature and run time. Our investigation shows that the choice of semantics has a dramatic effect on the properties of closed patterns and as a result, in some settings a generalization of the LCM algorithm is not possible. On the other hand, we provide a full generalization of LCM for the semantic setting that has been previously used by the Claudien system. More... »

PAGES

315-342

References to SciGraph publications

  • 1997-09. Levelwise Search and Borders of Theories in Knowledge Discovery in DATA MINING AND KNOWLEDGE DISCOVERY
  • 1997-02. Clausal Discovery in MACHINE LEARNING
  • 1999. Formal Concept Analysis, Mathematical Foundations in NONE
  • 1999. Application of Different Learning Methods to Hungarian Part-of-Speech Tagging in INDUCTIVE LOGIC PROGRAMMING
  • 2008. Logical and Relational Learning in ADVANCES IN ARTIFICIAL INTELLIGENCE - SBIA 2008
  • 1997. Foundations of Inductive Logic Programming in NONE
  • 2005. An Output-Polynomial Time Algorithm for Mining Frequent Closed Attribute Trees in INDUCTIVE LOGIC PROGRAMMING
  • 1987. Foundations of Logic Programming in NONE
  • 2003. An Exhaustive Matching Procedure for the Improvement of Learning Efficiency in INDUCTIVE LOGIC PROGRAMMING
  • 2004. An Efficient Algorithm for Enumerating Closed Patterns in Transaction Databases in DISCOVERY SCIENCE
  • 2004. Machine Learning and Formal Concept Analysis in CONCEPT LATTICES
  • 2003. Efficient Frequent Query Discovery in Farmer in KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2003
  • 2005. Learning Closed Sets of Labeled Graphs for Chemical Applications in INDUCTIVE LOGIC PROGRAMMING
  • 2011-05. Effective feature construction by maximum common subgraph sampling in MACHINE LEARNING
  • 2004-11. Mining Non-Redundant Association Rules in DATA MINING AND KNOWLEDGE DISCOVERY
  • 2003-11. On Maximal Frequent and Minimal Infrequent Sets in Binary Matrices in ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE
  • 2008. What Is Frequent in a Single Graph? in ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING
  • 1999. Learning of Simple Conceptual Graphs from Positive and Negative Examples in PRINCIPLES OF DATA MINING AND KNOWLEDGE DISCOVERY
  • 2000. Mining Minimal Non-redundant Association Rules Using Frequent Closed Itemsets in COMPUTATIONAL LOGIC — CL 2000
  • 2001. Discovering Associations between Spatial Objects: An ILP Application in INDUCTIVE LOGIC PROGRAMMING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10472-012-9324-8

    DOI

    http://dx.doi.org/10.1007/s10472-012-9324-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035499794


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Inria research centre Lille - Nord Europe", 
              "id": "https://www.grid.ac/institutes/grid.457352.2", 
              "name": [
                "INRIA Lille Nord Europe, Lille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garriga", 
            "givenName": "Gemma C.", 
            "id": "sg:person.012562361573.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012562361573.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tufts University", 
              "id": "https://www.grid.ac/institutes/grid.429997.8", 
              "name": [
                "Department of Computer Science, Tufts University, Medford, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khardon", 
            "givenName": "Roni", 
            "id": "sg:person.016026536323.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026536323.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "KU Leuven", 
              "id": "https://www.grid.ac/institutes/grid.5596.f", 
              "name": [
                "Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "De Raedt", 
            "givenName": "Luc", 
            "id": "sg:person.015333627665.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333627665.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/b:dami.0000040429.96086.c7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001948553", 
              "https://doi.org/10.1023/b:dami.0000040429.96086.c7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/777943.777945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002830481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0743-1066(94)90035-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002893202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11536314_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003806620", 
              "https://doi.org/10.1007/11536314_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11536314_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003806620", 
              "https://doi.org/10.1007/11536314_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-39917-9_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007638775", 
              "https://doi.org/10.1007/978-3-540-39917-9_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-39917-9_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007638775", 
              "https://doi.org/10.1007/978-3-540-39917-9_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88190-2_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009449610", 
              "https://doi.org/10.1007/978-3-540-88190-2_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88190-2_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009449610", 
              "https://doi.org/10.1007/978-3-540-88190-2_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-39804-2_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010922116", 
              "https://doi.org/10.1007/978-3-540-39804-2_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-39804-2_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010922116", 
              "https://doi.org/10.1007/978-3-540-39804-2_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009796218281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011497512", 
              "https://doi.org/10.1023/a:1009796218281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48751-4_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012116077", 
              "https://doi.org/10.1007/3-540-48751-4_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44957-4_65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013087092", 
              "https://doi.org/10.1007/3-540-44957-4_65"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1015571330", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-59830-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015571330", 
              "https://doi.org/10.1007/978-3-642-59830-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-59830-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015571330", 
              "https://doi.org/10.1007/978-3-642-59830-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-68125-0_84", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015857389", 
              "https://doi.org/10.1007/978-3-540-68125-0_84"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-68125-0_84", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015857389", 
              "https://doi.org/10.1007/978-3-540-68125-0_84"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-83189-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016029570", 
              "https://doi.org/10.1007/978-3-642-83189-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-83189-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016029570", 
              "https://doi.org/10.1007/978-3-642-83189-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-010-5193-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017986780", 
              "https://doi.org/10.1007/s10994-010-5193-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/956750.956784", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020461301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tcs.2006.11.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024788660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/342009.335372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025244221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11536314_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025744050", 
              "https://doi.org/10.1007/11536314_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11536314_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025744050", 
              "https://doi.org/10.1007/11536314_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44797-0_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026640546", 
              "https://doi.org/10.1007/3-540-44797-0_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/170035.170072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028726331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30214-8_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032189170", 
              "https://doi.org/10.1007/978-3-540-30214-8_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30214-8_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032189170", 
              "https://doi.org/10.1007/978-3-540-30214-8_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1007730.1007744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033272278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007361123060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034235085", 
              "https://doi.org/10.1023/a:1007361123060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0004-3702(01)00062-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038428583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/toxsci/54.1.138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038570781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024605820527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043856204", 
              "https://doi.org/10.1023/a:1024605820527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-48247-5_47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048667160", 
              "https://doi.org/10.1007/978-3-540-48247-5_47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-48247-5_47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048667160", 
              "https://doi.org/10.1007/978-3-540-48247-5_47"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24651-0_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050324781", 
              "https://doi.org/10.1007/978-3-540-24651-0_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/tx000208y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056296557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/tx000208y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056296557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jn/132.4.658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1075023814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9781611972726.27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088799881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.21236/ada439580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091583281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icdm.2002.1184038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094010722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icdm.2003.1250900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095753611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109702795", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-62927-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109702795", 
              "https://doi.org/10.1007/3-540-62927-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-62927-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109702795", 
              "https://doi.org/10.1007/3-540-62927-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-62927-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109702795", 
              "https://doi.org/10.1007/3-540-62927-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-12", 
        "datePublishedReg": "2013-12-01", 
        "description": "Recent theoretical insights have led to the introduction of efficient algorithms for mining closed item-sets. This paper investigates potential generalizations of this paradigm to mine closed patterns in relational, graph and network databases. Several semantics and associated definitions for closed patterns in relational data have been introduced in previous work, but the differences among these and the implications of the choice of semantics was not clear. The paper investigates these implications in the context of generalizing the LCM algorithm, an algorithm for enumerating closed item-sets. LCM is attractive since its run time is linear in the number of closed patterns and since it does not need to store the patterns output in order to avoid duplicates, further reducing memory signature and run time. Our investigation shows that the choice of semantics has a dramatic effect on the properties of closed patterns and as a result, in some settings a generalization of the LCM algorithm is not possible. On the other hand, we provide a full generalization of LCM for the semantic setting that has been previously used by the Claudien system.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10472-012-9324-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043955", 
            "issn": [
              "1012-2443", 
              "1573-7470"
            ], 
            "name": "Annals of Mathematics and Artificial Intelligence", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "69"
          }
        ], 
        "name": "Mining closed patterns in relational, graph and network data", 
        "pagination": "315-342", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a91b2a5787e720842ae47a39b5eaeeeefa0f2a742567ef0a472e3c9ea0862572"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10472-012-9324-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035499794"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10472-012-9324-8", 
          "https://app.dimensions.ai/details/publication/pub.1035499794"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T02:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000590.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10472-012-9324-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10472-012-9324-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10472-012-9324-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10472-012-9324-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10472-012-9324-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    210 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10472-012-9324-8 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author N9eafc302907d4a5a82c3dc53710c2554
    4 schema:citation sg:pub.10.1007/11536314_1
    5 sg:pub.10.1007/11536314_12
    6 sg:pub.10.1007/3-540-44797-0_13
    7 sg:pub.10.1007/3-540-44957-4_65
    8 sg:pub.10.1007/3-540-48751-4_13
    9 sg:pub.10.1007/3-540-62927-0
    10 sg:pub.10.1007/978-3-540-24651-0_25
    11 sg:pub.10.1007/978-3-540-30214-8_2
    12 sg:pub.10.1007/978-3-540-39804-2_32
    13 sg:pub.10.1007/978-3-540-39917-9_9
    14 sg:pub.10.1007/978-3-540-48247-5_47
    15 sg:pub.10.1007/978-3-540-68125-0_84
    16 sg:pub.10.1007/978-3-540-88190-2_1
    17 sg:pub.10.1007/978-3-642-59830-2
    18 sg:pub.10.1007/978-3-642-83189-8
    19 sg:pub.10.1007/s10994-010-5193-8
    20 sg:pub.10.1023/a:1007361123060
    21 sg:pub.10.1023/a:1009796218281
    22 sg:pub.10.1023/a:1024605820527
    23 sg:pub.10.1023/b:dami.0000040429.96086.c7
    24 https://app.dimensions.ai/details/publication/pub.1015571330
    25 https://app.dimensions.ai/details/publication/pub.1109702795
    26 https://doi.org/10.1016/0743-1066(94)90035-3
    27 https://doi.org/10.1016/j.tcs.2006.11.009
    28 https://doi.org/10.1016/s0004-3702(01)00062-5
    29 https://doi.org/10.1021/tx000208y
    30 https://doi.org/10.1093/jn/132.4.658
    31 https://doi.org/10.1093/toxsci/54.1.138
    32 https://doi.org/10.1109/icdm.2002.1184038
    33 https://doi.org/10.1109/icdm.2003.1250900
    34 https://doi.org/10.1137/1.9781611972726.27
    35 https://doi.org/10.1145/1007730.1007744
    36 https://doi.org/10.1145/170035.170072
    37 https://doi.org/10.1145/342009.335372
    38 https://doi.org/10.1145/777943.777945
    39 https://doi.org/10.1145/956750.956784
    40 https://doi.org/10.21236/ada439580
    41 schema:datePublished 2013-12
    42 schema:datePublishedReg 2013-12-01
    43 schema:description Recent theoretical insights have led to the introduction of efficient algorithms for mining closed item-sets. This paper investigates potential generalizations of this paradigm to mine closed patterns in relational, graph and network databases. Several semantics and associated definitions for closed patterns in relational data have been introduced in previous work, but the differences among these and the implications of the choice of semantics was not clear. The paper investigates these implications in the context of generalizing the LCM algorithm, an algorithm for enumerating closed item-sets. LCM is attractive since its run time is linear in the number of closed patterns and since it does not need to store the patterns output in order to avoid duplicates, further reducing memory signature and run time. Our investigation shows that the choice of semantics has a dramatic effect on the properties of closed patterns and as a result, in some settings a generalization of the LCM algorithm is not possible. On the other hand, we provide a full generalization of LCM for the semantic setting that has been previously used by the Claudien system.
    44 schema:genre research_article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree true
    47 schema:isPartOf N06ff11c91fa84a388a467b5d69f7c1ca
    48 Nf7d11b50658d462b9320064c6d51bb88
    49 sg:journal.1043955
    50 schema:name Mining closed patterns in relational, graph and network data
    51 schema:pagination 315-342
    52 schema:productId N231293bca37547958d6f54f191c14840
    53 N28d618cad2864aae845305c991a7edf1
    54 N9b9a2dd31e39418a8b4224e689430aab
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035499794
    56 https://doi.org/10.1007/s10472-012-9324-8
    57 schema:sdDatePublished 2019-04-11T02:28
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher N2611429c8ae0467983ee4de1a4f32381
    60 schema:url http://link.springer.com/10.1007%2Fs10472-012-9324-8
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset articles
    63 rdf:type schema:ScholarlyArticle
    64 N06ff11c91fa84a388a467b5d69f7c1ca schema:volumeNumber 69
    65 rdf:type schema:PublicationVolume
    66 N231293bca37547958d6f54f191c14840 schema:name dimensions_id
    67 schema:value pub.1035499794
    68 rdf:type schema:PropertyValue
    69 N2611429c8ae0467983ee4de1a4f32381 schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 N28d618cad2864aae845305c991a7edf1 schema:name doi
    72 schema:value 10.1007/s10472-012-9324-8
    73 rdf:type schema:PropertyValue
    74 N290fbbd20ba44ecfa0a99bd4718cff06 rdf:first sg:person.016026536323.44
    75 rdf:rest N70c80346dfa141ad90a1b0e63c639b7a
    76 N70c80346dfa141ad90a1b0e63c639b7a rdf:first sg:person.015333627665.77
    77 rdf:rest rdf:nil
    78 N9b9a2dd31e39418a8b4224e689430aab schema:name readcube_id
    79 schema:value a91b2a5787e720842ae47a39b5eaeeeefa0f2a742567ef0a472e3c9ea0862572
    80 rdf:type schema:PropertyValue
    81 N9eafc302907d4a5a82c3dc53710c2554 rdf:first sg:person.012562361573.40
    82 rdf:rest N290fbbd20ba44ecfa0a99bd4718cff06
    83 Nf7d11b50658d462b9320064c6d51bb88 schema:issueNumber 4
    84 rdf:type schema:PublicationIssue
    85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Information and Computing Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Computation Theory and Mathematics
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1043955 schema:issn 1012-2443
    92 1573-7470
    93 schema:name Annals of Mathematics and Artificial Intelligence
    94 rdf:type schema:Periodical
    95 sg:person.012562361573.40 schema:affiliation https://www.grid.ac/institutes/grid.457352.2
    96 schema:familyName Garriga
    97 schema:givenName Gemma C.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012562361573.40
    99 rdf:type schema:Person
    100 sg:person.015333627665.77 schema:affiliation https://www.grid.ac/institutes/grid.5596.f
    101 schema:familyName De Raedt
    102 schema:givenName Luc
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333627665.77
    104 rdf:type schema:Person
    105 sg:person.016026536323.44 schema:affiliation https://www.grid.ac/institutes/grid.429997.8
    106 schema:familyName Khardon
    107 schema:givenName Roni
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026536323.44
    109 rdf:type schema:Person
    110 sg:pub.10.1007/11536314_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003806620
    111 https://doi.org/10.1007/11536314_1
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/11536314_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025744050
    114 https://doi.org/10.1007/11536314_12
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/3-540-44797-0_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026640546
    117 https://doi.org/10.1007/3-540-44797-0_13
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/3-540-44957-4_65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013087092
    120 https://doi.org/10.1007/3-540-44957-4_65
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/3-540-48751-4_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012116077
    123 https://doi.org/10.1007/3-540-48751-4_13
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/3-540-62927-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109702795
    126 https://doi.org/10.1007/3-540-62927-0
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/978-3-540-24651-0_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050324781
    129 https://doi.org/10.1007/978-3-540-24651-0_25
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/978-3-540-30214-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032189170
    132 https://doi.org/10.1007/978-3-540-30214-8_2
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/978-3-540-39804-2_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010922116
    135 https://doi.org/10.1007/978-3-540-39804-2_32
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/978-3-540-39917-9_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007638775
    138 https://doi.org/10.1007/978-3-540-39917-9_9
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/978-3-540-48247-5_47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048667160
    141 https://doi.org/10.1007/978-3-540-48247-5_47
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/978-3-540-68125-0_84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015857389
    144 https://doi.org/10.1007/978-3-540-68125-0_84
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/978-3-540-88190-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009449610
    147 https://doi.org/10.1007/978-3-540-88190-2_1
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/978-3-642-59830-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015571330
    150 https://doi.org/10.1007/978-3-642-59830-2
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/978-3-642-83189-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016029570
    153 https://doi.org/10.1007/978-3-642-83189-8
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s10994-010-5193-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017986780
    156 https://doi.org/10.1007/s10994-010-5193-8
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1023/a:1007361123060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034235085
    159 https://doi.org/10.1023/a:1007361123060
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1023/a:1009796218281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011497512
    162 https://doi.org/10.1023/a:1009796218281
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1023/a:1024605820527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043856204
    165 https://doi.org/10.1023/a:1024605820527
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1023/b:dami.0000040429.96086.c7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001948553
    168 https://doi.org/10.1023/b:dami.0000040429.96086.c7
    169 rdf:type schema:CreativeWork
    170 https://app.dimensions.ai/details/publication/pub.1015571330 schema:CreativeWork
    171 https://app.dimensions.ai/details/publication/pub.1109702795 schema:CreativeWork
    172 https://doi.org/10.1016/0743-1066(94)90035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002893202
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.tcs.2006.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024788660
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/s0004-3702(01)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038428583
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1021/tx000208y schema:sameAs https://app.dimensions.ai/details/publication/pub.1056296557
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1093/jn/132.4.658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075023814
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1093/toxsci/54.1.138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038570781
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1109/icdm.2002.1184038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094010722
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1109/icdm.2003.1250900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095753611
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1137/1.9781611972726.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088799881
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1145/1007730.1007744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033272278
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1145/170035.170072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028726331
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1145/342009.335372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025244221
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1145/777943.777945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002830481
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1145/956750.956784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020461301
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.21236/ada439580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091583281
    201 rdf:type schema:CreativeWork
    202 https://www.grid.ac/institutes/grid.429997.8 schema:alternateName Tufts University
    203 schema:name Department of Computer Science, Tufts University, Medford, MA, USA
    204 rdf:type schema:Organization
    205 https://www.grid.ac/institutes/grid.457352.2 schema:alternateName Inria research centre Lille - Nord Europe
    206 schema:name INRIA Lille Nord Europe, Lille, France
    207 rdf:type schema:Organization
    208 https://www.grid.ac/institutes/grid.5596.f schema:alternateName KU Leuven
    209 schema:name Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium
    210 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...