Design of a low-current shunt-feedback transimpedance amplifier with inherent loop-stability View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-15

AUTHORS

M. Mathew, B. L. Hart, K. Hayatleh

ABSTRACT

In this paper we propose a new architecture for enhancing the performance of a transimpedance amplifier used for low-currents, and in particular, that used in biosensing. It is usually the first block in biomedical acquisition systems for converting a current in the nanoampere and picoampere range into a proportional voltage, with an amplitude suitable for further processing. There exist two main amplifier topologies for achieving this, current-mode and shunt-feedback mode. This paper introduces a shunt-feedback amplifier that embodies current-mode operation and thereby offers the advantages of both existing schemes. A conventional shunt-feedback amplifier has a number of stages and requires compensation components to achieve stability of the feedback loop. The exemplary circuit described is inherently stable because a high gain is effectively achieved in one stage that has a dominant pole controlling the frequency response. Exhibiting complementary symmetry, the configuration has an input port that is very close to earth potential. This enables the configuration to handle bidirectional input signals such are as met with in electrochemical ampero-metric biosensors. For the 0.35 µm process adopted and ± 3.3 V rail supplies, the power dissipation is 330 µW. With a transimpedance gain of 120 dBΩ the incremental input and output resistances are less than 2 Ω and the − 3 dB bandwidth for non-optical input currents is 8.2 MHz. The input referred noise current is 3.5 pA/√Hz. More... »

PAGES

1-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10470-019-01439-5

DOI

http://dx.doi.org/10.1007/s10470-019-01439-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112779640


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Oxford Brookes University", 
          "id": "https://www.grid.ac/institutes/grid.7628.b", 
          "name": [
            "School of Engineering, Computing and Mathematics, Oxford Brookes University, Wheatley Campus, Wheatley, OX33 1HX, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathew", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oxford Brookes University", 
          "id": "https://www.grid.ac/institutes/grid.7628.b", 
          "name": [
            "School of Engineering, Computing and Mathematics, Oxford Brookes University, Wheatley Campus, Wheatley, OX33 1HX, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hart", 
        "givenName": "B. L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oxford Brookes University", 
          "id": "https://www.grid.ac/institutes/grid.7628.b", 
          "name": [
            "School of Engineering, Computing and Mathematics, Oxford Brookes University, Wheatley Campus, Wheatley, OX33 1HX, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hayatleh", 
        "givenName": "K.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10470-016-0867-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038247826", 
          "https://doi.org/10.1007/s10470-016-0867-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10470-016-0867-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038247826", 
          "https://doi.org/10.1007/s10470-016-0867-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/ebc20150010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056719808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4.50316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061166018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2009.2037847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061566768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mejo.2017.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084095971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsii.2017.2684822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084205344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1674-4926/38/8/085006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091314424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscas.1997.608671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093366412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscas.2014.6865056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094359119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscas.2012.6271734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094587094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2018.2809795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101302183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tim.2018.2826860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103661009"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-15", 
    "datePublishedReg": "2019-03-15", 
    "description": "In this paper we propose a new architecture for enhancing the performance of a transimpedance amplifier used for low-currents, and in particular, that used in biosensing. It is usually the first block in biomedical acquisition systems for converting a current in the nanoampere and picoampere range into a proportional voltage, with an amplitude suitable for further processing. There exist two main amplifier topologies for achieving this, current-mode and shunt-feedback mode. This paper introduces a shunt-feedback amplifier that embodies current-mode operation and thereby offers the advantages of both existing schemes. A conventional shunt-feedback amplifier has a number of stages and requires compensation components to achieve stability of the feedback loop. The exemplary circuit described is inherently stable because a high gain is effectively achieved in one stage that has a dominant pole controlling the frequency response. Exhibiting complementary symmetry, the configuration has an input port that is very close to earth potential. This enables the configuration to handle bidirectional input signals such are as met with in electrochemical ampero-metric biosensors. For the 0.35 \u00b5m process adopted and \u00b1 3.3 V rail supplies, the power dissipation is 330 \u00b5W. With a transimpedance gain of 120 dB\u03a9 the incremental input and output resistances are less than 2 \u03a9 and the \u2212 3 dB bandwidth for non-optical input currents is 8.2 MHz. The input referred noise current is 3.5 pA/\u221aHz.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10470-019-01439-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048207", 
        "issn": [
          "0925-1030", 
          "1573-1979"
        ], 
        "name": "Analog Integrated Circuits and Signal Processing", 
        "type": "Periodical"
      }
    ], 
    "name": "Design of a low-current shunt-feedback transimpedance amplifier with inherent loop-stability", 
    "pagination": "1-7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ca562bc531c6549c32408d2b81ccbc441a02e0beadd864dbbdd3e0621f9e2faa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10470-019-01439-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112779640"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10470-019-01439-5", 
      "https://app.dimensions.ai/details/publication/pub.1112779640"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29197_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10470-019-01439-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10470-019-01439-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10470-019-01439-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10470-019-01439-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10470-019-01439-5'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      21 PREDICATES      36 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10470-019-01439-5 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N99c2838b702440d6b3577f685b337296
4 schema:citation sg:pub.10.1007/s10470-016-0867-1
5 https://doi.org/10.1016/j.mejo.2017.03.001
6 https://doi.org/10.1042/ebc20150010
7 https://doi.org/10.1088/1674-4926/38/8/085006
8 https://doi.org/10.1109/4.50316
9 https://doi.org/10.1109/iscas.1997.608671
10 https://doi.org/10.1109/iscas.2012.6271734
11 https://doi.org/10.1109/iscas.2014.6865056
12 https://doi.org/10.1109/jsen.2018.2809795
13 https://doi.org/10.1109/tcsi.2009.2037847
14 https://doi.org/10.1109/tcsii.2017.2684822
15 https://doi.org/10.1109/tim.2018.2826860
16 schema:datePublished 2019-03-15
17 schema:datePublishedReg 2019-03-15
18 schema:description In this paper we propose a new architecture for enhancing the performance of a transimpedance amplifier used for low-currents, and in particular, that used in biosensing. It is usually the first block in biomedical acquisition systems for converting a current in the nanoampere and picoampere range into a proportional voltage, with an amplitude suitable for further processing. There exist two main amplifier topologies for achieving this, current-mode and shunt-feedback mode. This paper introduces a shunt-feedback amplifier that embodies current-mode operation and thereby offers the advantages of both existing schemes. A conventional shunt-feedback amplifier has a number of stages and requires compensation components to achieve stability of the feedback loop. The exemplary circuit described is inherently stable because a high gain is effectively achieved in one stage that has a dominant pole controlling the frequency response. Exhibiting complementary symmetry, the configuration has an input port that is very close to earth potential. This enables the configuration to handle bidirectional input signals such are as met with in electrochemical ampero-metric biosensors. For the 0.35 µm process adopted and ± 3.3 V rail supplies, the power dissipation is 330 µW. With a transimpedance gain of 120 dBΩ the incremental input and output resistances are less than 2 Ω and the − 3 dB bandwidth for non-optical input currents is 8.2 MHz. The input referred noise current is 3.5 pA/√Hz.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf sg:journal.1048207
23 schema:name Design of a low-current shunt-feedback transimpedance amplifier with inherent loop-stability
24 schema:pagination 1-7
25 schema:productId N20d6b69a0c734ac9ad207a6ff559b5e8
26 N8a00c6ed27844806b7aa364f6cf1535c
27 N9956be147ce6468f8277960aa7e043a1
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112779640
29 https://doi.org/10.1007/s10470-019-01439-5
30 schema:sdDatePublished 2019-04-11T11:53
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nba793d8f26144748bc7100063fabc955
33 schema:url https://link.springer.com/10.1007%2Fs10470-019-01439-5
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N1a757863fbe7406ab0038e3961542367 schema:affiliation https://www.grid.ac/institutes/grid.7628.b
38 schema:familyName Hart
39 schema:givenName B. L.
40 rdf:type schema:Person
41 N20d6b69a0c734ac9ad207a6ff559b5e8 schema:name dimensions_id
42 schema:value pub.1112779640
43 rdf:type schema:PropertyValue
44 N8a00c6ed27844806b7aa364f6cf1535c schema:name readcube_id
45 schema:value ca562bc531c6549c32408d2b81ccbc441a02e0beadd864dbbdd3e0621f9e2faa
46 rdf:type schema:PropertyValue
47 N9956be147ce6468f8277960aa7e043a1 schema:name doi
48 schema:value 10.1007/s10470-019-01439-5
49 rdf:type schema:PropertyValue
50 N99c2838b702440d6b3577f685b337296 rdf:first Na6fa3716b0c04cc3a9edcacefe51ca05
51 rdf:rest Na9d7dcd947024128bacb94223f25de2c
52 Na6fa3716b0c04cc3a9edcacefe51ca05 schema:affiliation https://www.grid.ac/institutes/grid.7628.b
53 schema:familyName Mathew
54 schema:givenName M.
55 rdf:type schema:Person
56 Na9d7dcd947024128bacb94223f25de2c rdf:first N1a757863fbe7406ab0038e3961542367
57 rdf:rest Nbb539933f37c42cf98ad91a3f37da12f
58 Nba793d8f26144748bc7100063fabc955 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nbb539933f37c42cf98ad91a3f37da12f rdf:first Nf173c0518b2e48a4bb0f0f33c75b7a33
61 rdf:rest rdf:nil
62 Nf173c0518b2e48a4bb0f0f33c75b7a33 schema:affiliation https://www.grid.ac/institutes/grid.7628.b
63 schema:familyName Hayatleh
64 schema:givenName K.
65 rdf:type schema:Person
66 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
67 schema:name Technology
68 rdf:type schema:DefinedTerm
69 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
70 schema:name Communications Technologies
71 rdf:type schema:DefinedTerm
72 sg:journal.1048207 schema:issn 0925-1030
73 1573-1979
74 schema:name Analog Integrated Circuits and Signal Processing
75 rdf:type schema:Periodical
76 sg:pub.10.1007/s10470-016-0867-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038247826
77 https://doi.org/10.1007/s10470-016-0867-1
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/j.mejo.2017.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084095971
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1042/ebc20150010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056719808
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1088/1674-4926/38/8/085006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091314424
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1109/4.50316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061166018
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1109/iscas.1997.608671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093366412
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1109/iscas.2012.6271734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094587094
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1109/iscas.2014.6865056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094359119
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/jsen.2018.2809795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101302183
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/tcsi.2009.2037847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061566768
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/tcsii.2017.2684822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084205344
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/tim.2018.2826860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103661009
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.7628.b schema:alternateName Oxford Brookes University
102 schema:name School of Engineering, Computing and Mathematics, Oxford Brookes University, Wheatley Campus, Wheatley, OX33 1HX, Oxford, UK
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...