An efficient end-to-end deep learning architecture for activity classification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Amel Ben Mahjoub, Mohamed Atri

ABSTRACT

Deep learning is widely considered to be the most important method in computer vision fields, which has a lot of applications such as image recognition, robot navigation systems and self-driving cars. Recent developments in neural networks have led to an efficient end-to-end architecture to human activity representation and classification. In the light of these recent events in deep learning, there is now much considerable concern about developing less expensive computation and memory-wise methods. This paper presents an optimized end-to-end approach to describe and classify human action videos. In the beginning, RGB activity videos are sampled to frame sequences. Then convolutional features are extracted from these frames based on the pre-trained Inception-v3 model. Finally, video actions classification is done by training a long short-term with feature vectors. Our proposed architecture aims to perform low computational cost and improved accuracy performances. Our efficient end-to-end approach outperforms previously published results by an accuracy rate of 98.4% and 98.5% on the UTD-MHAD HS and UTD-MHAD SS public dataset experiments, respectively. More... »

PAGES

23-32

References to SciGraph publications

  • 2016. Spatio-Temporal LSTM with Trust Gates for 3D Human Action Recognition in COMPUTER VISION – ECCV 2016
  • 2018-01. Visual interpretability for deep learning: a survey in FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING
  • 2016. Multi-region Two-Stream R-CNN for Action Detection in COMPUTER VISION – ECCV 2016
  • 2018. Attention-Based Temporal Weighted Convolutional Neural Network for Action Recognition in ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10470-018-1306-2

    DOI

    http://dx.doi.org/10.1007/s10470-018-1306-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106289592


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Monastir", 
              "id": "https://www.grid.ac/institutes/grid.411838.7", 
              "name": [
                "Laboratory of Electronics and Micro-electronics, Faculty of Sciences, Monastir University, 5000, Monastir, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ben\u00a0Mahjoub", 
            "givenName": "Amel", 
            "id": "sg:person.016161776127.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161776127.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Monastir", 
              "id": "https://www.grid.ac/institutes/grid.411838.7", 
              "name": [
                "Laboratory of Electronics and Micro-electronics, Faculty of Sciences, Monastir University, 5000, Monastir, Tunisia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Atri", 
            "givenName": "Mohamed", 
            "id": "sg:person.012173542323.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012173542323.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/2393347.2396382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002533850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46493-0_45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007523086", 
              "https://doi.org/10.1007/978-3-319-46493-0_45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46487-9_50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017854486", 
              "https://doi.org/10.1007/978-3-319-46487-9_50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsen.2015.2487358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061324392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4018/ijmdem.2015100102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071880725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.imavis.2017.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083874326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/joe.2016.0330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084138224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2017.2712608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085899933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2017.2712608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085899933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2017.2712608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085899933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2017.2718189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086151781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/iet-cvi.2017.0005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090619724"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/iet-cvi.2016.0355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091936997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.inffus.2017.10.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092650349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.image.2017.11.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093077053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2017.2778563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093100712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2016.90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093359587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ijcnn.2017.7965890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093433019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2016.308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093497718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2015.368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093855383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2015.7350781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094540780"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ism.2015.118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094635544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2015.7299101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094644814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/fg.2017.150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094649912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2015.515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094753661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2015.129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094944480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icacci.2016.7732038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095282343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/sibgrapi.2016.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095710439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvprw.2017.161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095805931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2017.391", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095839726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2017.634", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095850372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2017.115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100060077"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2017.84", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100060674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tetci.2017.2778716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100061169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5121/csit.2017.71606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100285817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccvw.2017.145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100556958"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2018.01.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100942062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2018.01.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100942062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iciip.2017.8313715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101524348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1631/fitee.1700808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101554124", 
              "https://doi.org/10.1631/fitee.1700808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1631/fitee.1700808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101554124", 
              "https://doi.org/10.1631/fitee.1700808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-92007-8_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104132060", 
              "https://doi.org/10.1007/978-3-319-92007-8_9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "Deep learning is widely considered to be the most important method in computer vision fields, which has a lot of applications such as image recognition, robot navigation systems and self-driving cars. Recent developments in neural networks have led to an efficient end-to-end architecture to human activity representation and classification. In the light of these recent events in deep learning, there is now much considerable concern about developing less expensive computation and memory-wise methods. This paper presents an optimized end-to-end approach to describe and classify human action videos. In the beginning, RGB activity videos are sampled to frame sequences. Then convolutional features are extracted from these frames based on the pre-trained Inception-v3 model. Finally, video actions classification is done by training a long short-term with feature vectors. Our proposed architecture aims to perform low computational cost and improved accuracy performances. Our efficient end-to-end approach outperforms previously published results by an accuracy rate of 98.4% and 98.5% on the UTD-MHAD HS and UTD-MHAD SS public dataset experiments, respectively.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10470-018-1306-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1048207", 
            "issn": [
              "0925-1030", 
              "1573-1979"
            ], 
            "name": "Analog Integrated Circuits and Signal Processing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "99"
          }
        ], 
        "name": "An efficient end-to-end deep learning architecture for activity classification", 
        "pagination": "23-32", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10470-018-1306-2"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ad66e88e9862da2778fd4ee4e2a6d75fab1c4e619df19a0e19519c5ea655262a"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106289592"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10470-018-1306-2", 
          "https://app.dimensions.ai/details/publication/pub.1106289592"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91432_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10470-018-1306-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10470-018-1306-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10470-018-1306-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10470-018-1306-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10470-018-1306-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    186 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10470-018-1306-2 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nc088153d8e244779acf8f16cc83e9afb
    4 schema:citation sg:pub.10.1007/978-3-319-46487-9_50
    5 sg:pub.10.1007/978-3-319-46493-0_45
    6 sg:pub.10.1007/978-3-319-92007-8_9
    7 sg:pub.10.1631/fitee.1700808
    8 https://doi.org/10.1016/j.image.2017.11.005
    9 https://doi.org/10.1016/j.imavis.2017.01.010
    10 https://doi.org/10.1016/j.inffus.2017.10.006
    11 https://doi.org/10.1016/j.patcog.2018.01.020
    12 https://doi.org/10.1049/iet-cvi.2016.0355
    13 https://doi.org/10.1049/iet-cvi.2017.0005
    14 https://doi.org/10.1049/joe.2016.0330
    15 https://doi.org/10.1109/cvpr.2015.7299101
    16 https://doi.org/10.1109/cvpr.2016.308
    17 https://doi.org/10.1109/cvpr.2016.90
    18 https://doi.org/10.1109/cvpr.2017.391
    19 https://doi.org/10.1109/cvpr.2017.634
    20 https://doi.org/10.1109/cvprw.2017.161
    21 https://doi.org/10.1109/fg.2017.150
    22 https://doi.org/10.1109/icacci.2016.7732038
    23 https://doi.org/10.1109/iccv.2015.129
    24 https://doi.org/10.1109/iccv.2015.368
    25 https://doi.org/10.1109/iccv.2015.515
    26 https://doi.org/10.1109/iccv.2017.115
    27 https://doi.org/10.1109/iccv.2017.84
    28 https://doi.org/10.1109/iccvw.2017.145
    29 https://doi.org/10.1109/iciip.2017.8313715
    30 https://doi.org/10.1109/icip.2015.7350781
    31 https://doi.org/10.1109/ijcnn.2017.7965890
    32 https://doi.org/10.1109/ism.2015.118
    33 https://doi.org/10.1109/jsen.2015.2487358
    34 https://doi.org/10.1109/sibgrapi.2016.037
    35 https://doi.org/10.1109/tetci.2017.2778716
    36 https://doi.org/10.1109/tip.2017.2718189
    37 https://doi.org/10.1109/tip.2017.2778563
    38 https://doi.org/10.1109/tpami.2017.2712608
    39 https://doi.org/10.1145/2393347.2396382
    40 https://doi.org/10.4018/ijmdem.2015100102
    41 https://doi.org/10.5121/csit.2017.71606
    42 schema:datePublished 2019-04
    43 schema:datePublishedReg 2019-04-01
    44 schema:description Deep learning is widely considered to be the most important method in computer vision fields, which has a lot of applications such as image recognition, robot navigation systems and self-driving cars. Recent developments in neural networks have led to an efficient end-to-end architecture to human activity representation and classification. In the light of these recent events in deep learning, there is now much considerable concern about developing less expensive computation and memory-wise methods. This paper presents an optimized end-to-end approach to describe and classify human action videos. In the beginning, RGB activity videos are sampled to frame sequences. Then convolutional features are extracted from these frames based on the pre-trained Inception-v3 model. Finally, video actions classification is done by training a long short-term with feature vectors. Our proposed architecture aims to perform low computational cost and improved accuracy performances. Our efficient end-to-end approach outperforms previously published results by an accuracy rate of 98.4% and 98.5% on the UTD-MHAD HS and UTD-MHAD SS public dataset experiments, respectively.
    45 schema:genre research_article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree false
    48 schema:isPartOf N119de02008c348a09600af0b201814f1
    49 N7262da0fb79d42a9bbc7fc340231df1f
    50 sg:journal.1048207
    51 schema:name An efficient end-to-end deep learning architecture for activity classification
    52 schema:pagination 23-32
    53 schema:productId N54a586f0da9f4e0394bc2bdde3ce42f6
    54 N970e7bd4b9824b90909865c092eac3f5
    55 Ne440e8ca9c174b2fa97d3798ec4849e7
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106289592
    57 https://doi.org/10.1007/s10470-018-1306-2
    58 schema:sdDatePublished 2019-04-15T08:59
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher N9ce7c8190d314738b374a4ebb07b4224
    61 schema:url https://link.springer.com/10.1007%2Fs10470-018-1306-2
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N119de02008c348a09600af0b201814f1 schema:issueNumber 1
    66 rdf:type schema:PublicationIssue
    67 N54a586f0da9f4e0394bc2bdde3ce42f6 schema:name dimensions_id
    68 schema:value pub.1106289592
    69 rdf:type schema:PropertyValue
    70 N7262da0fb79d42a9bbc7fc340231df1f schema:volumeNumber 99
    71 rdf:type schema:PublicationVolume
    72 N970e7bd4b9824b90909865c092eac3f5 schema:name readcube_id
    73 schema:value ad66e88e9862da2778fd4ee4e2a6d75fab1c4e619df19a0e19519c5ea655262a
    74 rdf:type schema:PropertyValue
    75 N9ce7c8190d314738b374a4ebb07b4224 schema:name Springer Nature - SN SciGraph project
    76 rdf:type schema:Organization
    77 Nc088153d8e244779acf8f16cc83e9afb rdf:first sg:person.016161776127.22
    78 rdf:rest Nf71336b2def341f890eb5bcfa4c7f42b
    79 Ne440e8ca9c174b2fa97d3798ec4849e7 schema:name doi
    80 schema:value 10.1007/s10470-018-1306-2
    81 rdf:type schema:PropertyValue
    82 Nf71336b2def341f890eb5bcfa4c7f42b rdf:first sg:person.012173542323.27
    83 rdf:rest rdf:nil
    84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Information and Computing Sciences
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Artificial Intelligence and Image Processing
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1048207 schema:issn 0925-1030
    91 1573-1979
    92 schema:name Analog Integrated Circuits and Signal Processing
    93 rdf:type schema:Periodical
    94 sg:person.012173542323.27 schema:affiliation https://www.grid.ac/institutes/grid.411838.7
    95 schema:familyName Atri
    96 schema:givenName Mohamed
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012173542323.27
    98 rdf:type schema:Person
    99 sg:person.016161776127.22 schema:affiliation https://www.grid.ac/institutes/grid.411838.7
    100 schema:familyName Ben Mahjoub
    101 schema:givenName Amel
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161776127.22
    103 rdf:type schema:Person
    104 sg:pub.10.1007/978-3-319-46487-9_50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017854486
    105 https://doi.org/10.1007/978-3-319-46487-9_50
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-3-319-46493-0_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007523086
    108 https://doi.org/10.1007/978-3-319-46493-0_45
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/978-3-319-92007-8_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104132060
    111 https://doi.org/10.1007/978-3-319-92007-8_9
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1631/fitee.1700808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101554124
    114 https://doi.org/10.1631/fitee.1700808
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.image.2017.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093077053
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.imavis.2017.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083874326
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.inffus.2017.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092650349
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.patcog.2018.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100942062
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1049/iet-cvi.2016.0355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091936997
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1049/iet-cvi.2017.0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090619724
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1049/joe.2016.0330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084138224
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/cvpr.2015.7299101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094644814
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/cvpr.2016.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093497718
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/cvpr.2016.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093359587
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/cvpr.2017.391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095839726
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/cvpr.2017.634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095850372
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/cvprw.2017.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095805931
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/fg.2017.150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094649912
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/icacci.2016.7732038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095282343
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/iccv.2015.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094944480
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/iccv.2015.368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093855383
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/iccv.2015.515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094753661
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/iccv.2017.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100060077
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/iccv.2017.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100060674
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/iccvw.2017.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100556958
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/iciip.2017.8313715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101524348
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/icip.2015.7350781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094540780
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/ijcnn.2017.7965890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093433019
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/ism.2015.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094635544
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/jsen.2015.2487358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061324392
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/sibgrapi.2016.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095710439
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/tetci.2017.2778716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100061169
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/tip.2017.2718189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086151781
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/tip.2017.2778563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093100712
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1109/tpami.2017.2712608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085899933
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1145/2393347.2396382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002533850
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.4018/ijmdem.2015100102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071880725
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.5121/csit.2017.71606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100285817
    183 rdf:type schema:CreativeWork
    184 https://www.grid.ac/institutes/grid.411838.7 schema:alternateName University of Monastir
    185 schema:name Laboratory of Electronics and Micro-electronics, Faculty of Sciences, Monastir University, 5000, Monastir, Tunisia
    186 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...