Structure of Quasivariety Lattices. I. Independent Axiomatizability View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-22

AUTHORS

A. V. Kravchenko, A. M. Nurakunov, M. V. Schwidefsky

ABSTRACT

We find a sufficient condition for a quasivariety K to have continuum many subquasivarieties that have no independent quasi-equational bases relative to K but have ω-independent quasi-equational bases relative to K. This condition also implies that K is Q-universal.

PAGES

1-18

Journal

TITLE

Algebra and Logic

ISSUE

6

VOLUME

57

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10469-019-09516-4

DOI

http://dx.doi.org/10.1007/s10469-019-09516-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112945703


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Novosibirsk State Technical University", 
          "id": "https://www.grid.ac/institutes/grid.77667.37", 
          "name": [
            "Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, ul. Pirogova 1, 630090, Novosibirsk, Russia", 
            "Siberian Institute of Management, ul. Nizhegorodskaya 6, 630102, Novosibirsk, Russia", 
            "Novosibirsk State Technical University, pr. Marksa 20, 630073, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kravchenko", 
        "givenName": "A. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Mathematics, National Academy of Science of the Kyrgyz Republic, pr. Chui 265a, 720071, Bishkek, Kyrgyzstan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nurakunov", 
        "givenName": "A. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University", 
          "id": "https://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, ul. Pirogova 1, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schwidefsky", 
        "givenName": "M. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00739404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000806639", 
          "https://doi.org/10.1007/bf00739404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00739404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000806639", 
          "https://doi.org/10.1007/bf00739404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02681565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002633699", 
          "https://doi.org/10.1007/bf02681565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02681565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002633699", 
          "https://doi.org/10.1007/bf02681565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10469-015-9344-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005109389", 
          "https://doi.org/10.1007/s10469-015-9344-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01669475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013576645", 
          "https://doi.org/10.1007/bf01669475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01669475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013576645", 
          "https://doi.org/10.1007/bf01669475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01224026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016185371", 
          "https://doi.org/10.1007/bf01224026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01224026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016185371", 
          "https://doi.org/10.1007/bf01224026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00968621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018299808", 
          "https://doi.org/10.1007/bf00968621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00968621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018299808", 
          "https://doi.org/10.1007/bf00968621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10469-014-9286-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032085068", 
          "https://doi.org/10.1007/s10469-014-9286-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01157960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033639119", 
          "https://doi.org/10.1007/bf01157960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1970-0265258-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035287894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02106622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036169744", 
          "https://doi.org/10.1007/bf02106622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02106622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036169744", 
          "https://doi.org/10.1007/bf02106622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0049-237x(08)70531-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037220193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00000343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038833317", 
          "https://doi.org/10.1007/pl00000343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01040652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038928196", 
          "https://doi.org/10.1007/bf01040652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01668999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042060425", 
          "https://doi.org/10.1007/bf01668999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01668999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042060425", 
          "https://doi.org/10.1007/bf01668999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01188054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046956646", 
          "https://doi.org/10.1007/bf01188054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01188054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046956646", 
          "https://doi.org/10.1007/bf01188054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/im1989v033n01abeh000821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058167464"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-22", 
    "datePublishedReg": "2019-03-22", 
    "description": "We find a sufficient condition for a quasivariety K to have continuum many subquasivarieties that have no independent quasi-equational bases relative to K but have \u03c9-independent quasi-equational bases relative to K. This condition also implies that K is Q-universal.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10469-019-09516-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136408", 
        "issn": [
          "0002-5232", 
          "1573-8302"
        ], 
        "name": "Algebra and Logic", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "name": "Structure of Quasivariety Lattices. I. Independent Axiomatizability", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "803e6c8c187f9ccede818cbab1a5d5d088194dfd69291b36aa0ced0d35b581f9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10469-019-09516-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112945703"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10469-019-09516-4", 
      "https://app.dimensions.ai/details/publication/pub.1112945703"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130801_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10469-019-09516-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10469-019-09516-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10469-019-09516-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10469-019-09516-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10469-019-09516-4'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      20 PREDICATES      40 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10469-019-09516-4 schema:author N03302cd0a1fd4d5da1f5c217bb747076
2 schema:citation sg:pub.10.1007/bf00739404
3 sg:pub.10.1007/bf00968621
4 sg:pub.10.1007/bf01040652
5 sg:pub.10.1007/bf01157960
6 sg:pub.10.1007/bf01188054
7 sg:pub.10.1007/bf01224026
8 sg:pub.10.1007/bf01668999
9 sg:pub.10.1007/bf01669475
10 sg:pub.10.1007/bf02106622
11 sg:pub.10.1007/bf02681565
12 sg:pub.10.1007/pl00000343
13 sg:pub.10.1007/s10469-014-9286-5
14 sg:pub.10.1007/s10469-015-9344-7
15 https://doi.org/10.1016/s0049-237x(08)70531-7
16 https://doi.org/10.1070/im1989v033n01abeh000821
17 https://doi.org/10.1090/s0002-9939-1970-0265258-1
18 schema:datePublished 2019-03-22
19 schema:datePublishedReg 2019-03-22
20 schema:description We find a sufficient condition for a quasivariety K to have continuum many subquasivarieties that have no independent quasi-equational bases relative to K but have ω-independent quasi-equational bases relative to K. This condition also implies that K is Q-universal.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Nab5ac8598d044b949e30689de05ee8e4
25 Nd6a5bad02926417285b41313653ce2d5
26 sg:journal.1136408
27 schema:name Structure of Quasivariety Lattices. I. Independent Axiomatizability
28 schema:pagination 1-18
29 schema:productId N54b775871b854409b6c7eee340f87a99
30 N841129ae86cb45c1b5d66f9cbc1a074f
31 Na8304965830043cbb646d43f5e0ea2c7
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112945703
33 https://doi.org/10.1007/s10469-019-09516-4
34 schema:sdDatePublished 2019-04-11T13:52
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N6bc9853711f34ddc8256fbb586e9d721
37 schema:url https://link.springer.com/10.1007%2Fs10469-019-09516-4
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N03302cd0a1fd4d5da1f5c217bb747076 rdf:first N66bb4a73b89f4d44a71fda7ec7cec341
42 rdf:rest N6ddb6cb9f7ec431c959240f40956a72c
43 N0665ba81f44e46ceacb7e51bcb0fdfe6 schema:name Institute of Mathematics, National Academy of Science of the Kyrgyz Republic, pr. Chui 265a, 720071, Bishkek, Kyrgyzstan
44 rdf:type schema:Organization
45 N492369b31d46435b8552a5d644847262 rdf:first Nf710d6f5991843869b8e6d9a0f5e6053
46 rdf:rest rdf:nil
47 N54b775871b854409b6c7eee340f87a99 schema:name doi
48 schema:value 10.1007/s10469-019-09516-4
49 rdf:type schema:PropertyValue
50 N66bb4a73b89f4d44a71fda7ec7cec341 schema:affiliation https://www.grid.ac/institutes/grid.77667.37
51 schema:familyName Kravchenko
52 schema:givenName A. V.
53 rdf:type schema:Person
54 N6bc9853711f34ddc8256fbb586e9d721 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N6ddb6cb9f7ec431c959240f40956a72c rdf:first N80e10c09734649d7830321d814ce2ef6
57 rdf:rest N492369b31d46435b8552a5d644847262
58 N80e10c09734649d7830321d814ce2ef6 schema:affiliation N0665ba81f44e46ceacb7e51bcb0fdfe6
59 schema:familyName Nurakunov
60 schema:givenName A. M.
61 rdf:type schema:Person
62 N841129ae86cb45c1b5d66f9cbc1a074f schema:name readcube_id
63 schema:value 803e6c8c187f9ccede818cbab1a5d5d088194dfd69291b36aa0ced0d35b581f9
64 rdf:type schema:PropertyValue
65 Na8304965830043cbb646d43f5e0ea2c7 schema:name dimensions_id
66 schema:value pub.1112945703
67 rdf:type schema:PropertyValue
68 Nab5ac8598d044b949e30689de05ee8e4 schema:issueNumber 6
69 rdf:type schema:PublicationIssue
70 Nd6a5bad02926417285b41313653ce2d5 schema:volumeNumber 57
71 rdf:type schema:PublicationVolume
72 Nf710d6f5991843869b8e6d9a0f5e6053 schema:affiliation https://www.grid.ac/institutes/grid.4605.7
73 schema:familyName Schwidefsky
74 schema:givenName M. V.
75 rdf:type schema:Person
76 sg:journal.1136408 schema:issn 0002-5232
77 1573-8302
78 schema:name Algebra and Logic
79 rdf:type schema:Periodical
80 sg:pub.10.1007/bf00739404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000806639
81 https://doi.org/10.1007/bf00739404
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf00968621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018299808
84 https://doi.org/10.1007/bf00968621
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01040652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038928196
87 https://doi.org/10.1007/bf01040652
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf01157960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033639119
90 https://doi.org/10.1007/bf01157960
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf01188054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046956646
93 https://doi.org/10.1007/bf01188054
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf01224026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016185371
96 https://doi.org/10.1007/bf01224026
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf01668999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042060425
99 https://doi.org/10.1007/bf01668999
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf01669475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013576645
102 https://doi.org/10.1007/bf01669475
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf02106622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036169744
105 https://doi.org/10.1007/bf02106622
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf02681565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002633699
108 https://doi.org/10.1007/bf02681565
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/pl00000343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038833317
111 https://doi.org/10.1007/pl00000343
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10469-014-9286-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032085068
114 https://doi.org/10.1007/s10469-014-9286-5
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10469-015-9344-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005109389
117 https://doi.org/10.1007/s10469-015-9344-7
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0049-237x(08)70531-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037220193
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1070/im1989v033n01abeh000821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058167464
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1090/s0002-9939-1970-0265258-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035287894
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.4605.7 schema:alternateName Novosibirsk State University
126 schema:name Novosibirsk State University, ul. Pirogova 1, 630090, Novosibirsk, Russia
127 Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, 630090, Novosibirsk, Russia
128 rdf:type schema:Organization
129 https://www.grid.ac/institutes/grid.77667.37 schema:alternateName Novosibirsk State Technical University
130 schema:name Novosibirsk State Technical University, pr. Marksa 20, 630073, Novosibirsk, Russia
131 Novosibirsk State University, ul. Pirogova 1, 630090, Novosibirsk, Russia
132 Siberian Institute of Management, ul. Nizhegorodskaya 6, 630102, Novosibirsk, Russia
133 Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, 630090, Novosibirsk, Russia
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...