Finite-Dimensional Pointed Hopf Algebras Over Finite Simple Groups of Lie Type IV. Unipotent Classes in Chevalley and Steinberg Groups View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-14

AUTHORS

Nicolás Andruskiewitsch, Giovanna Carnovale, Gastón Andrés García

ABSTRACT

We show that all unipotent classes in finite simple Chevalley or Steinberg groups, different from PSLn(q) and PSp2n(q), collapse (i.e. are never the support of a finite-dimensional Nichols algebra), with a possible exception on one class of involutions in PSUn(2m).

PAGES

1-35

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10468-019-09868-6

DOI

http://dx.doi.org/10.1007/s10468-019-09868-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112141640


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of C\u00f3rdoba", 
          "id": "https://www.grid.ac/institutes/grid.10692.3c", 
          "name": [
            "FaMAF, Universidad Nacional de C\u00f3rdoba, CIEM \u2013 CONICET, Medina Allende s/n (5000) Ciudad Universitaria, C\u00f3rdoba, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andruskiewitsch", 
        "givenName": "Nicol\u00e1s", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Matematica Tullio Levi-Civita, Universit\u00e0 degli Studi di Padova, via Trieste 63, 35121, Padova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carnovale", 
        "givenName": "Giovanna", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of La Plata", 
          "id": "https://www.grid.ac/institutes/grid.9499.d", 
          "name": [
            "Departamento de Matem\u00e1tica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, C. C. 172, 1900, La Plata, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda", 
        "givenName": "Gast\u00f3n Andr\u00e9s", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jalgebra.2010.06.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003900856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalgebra.2014.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009921468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4840-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010773406", 
          "https://doi.org/10.1007/978-0-8176-4840-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4840-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010773406", 
          "https://doi.org/10.1007/978-0-8176-4840-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalgebra.2007.01.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011350694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00927879108824318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025554967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-8693(68)90020-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026268911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10231-010-0147-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034939221", 
          "https://doi.org/10.1007/s10231-010-0147-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10231-010-0147-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034939221", 
          "https://doi.org/10.1007/s10231-010-0147-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1987-0896007-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035294837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalgebra.2010.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046750001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219199715500534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062991622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cmb-2005-043-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072272622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/jems/711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085626014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/rmi/961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092076991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-65427-0_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092428245", 
          "https://doi.org/10.1007/978-3-319-65427-0_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-65427-0_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092428245", 
          "https://doi.org/10.1007/978-3-319-65427-0_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13373-017-0113-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093110665", 
          "https://doi.org/10.1007/s13373-017-0113-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13373-017-0113-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093110665", 
          "https://doi.org/10.1007/s13373-017-0113-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511994777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098663919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61804-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109710361", 
          "https://doi.org/10.1007/978-3-642-61804-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61804-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109710361", 
          "https://doi.org/10.1007/978-3-642-61804-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-14", 
    "datePublishedReg": "2019-02-14", 
    "description": "We show that all unipotent classes in finite simple Chevalley or Steinberg groups, different from PSLn(q) and PSp2n(q), collapse (i.e. are never the support of a finite-dimensional Nichols algebra), with a possible exception on one class of involutions in PSUn(2m).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10468-019-09868-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136385", 
        "issn": [
          "1386-923X", 
          "1572-9079"
        ], 
        "name": "Algebras and Representation Theory", 
        "type": "Periodical"
      }
    ], 
    "name": "Finite-Dimensional Pointed Hopf Algebras Over Finite Simple Groups of Lie Type IV. Unipotent Classes in Chevalley and Steinberg Groups", 
    "pagination": "1-35", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "34bc7a6e92ad77cf20e0725133c73b66c8637bf5aa61a20dbe6205fe6ce7b67d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10468-019-09868-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112141640"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10468-019-09868-6", 
      "https://app.dimensions.ai/details/publication/pub.1112141640"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000337_0000000337/records_37553_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10468-019-09868-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10468-019-09868-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10468-019-09868-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10468-019-09868-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10468-019-09868-6'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      20 PREDICATES      39 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10468-019-09868-6 schema:author N687c367a99d246f988d37df8cf979314
2 schema:citation sg:pub.10.1007/978-0-8176-4840-4
3 sg:pub.10.1007/978-3-319-65427-0_4
4 sg:pub.10.1007/978-3-642-61804-8
5 sg:pub.10.1007/s10231-010-0147-0
6 sg:pub.10.1007/s13373-017-0113-x
7 https://doi.org/10.1016/0021-8693(68)90020-3
8 https://doi.org/10.1016/j.jalgebra.2007.01.048
9 https://doi.org/10.1016/j.jalgebra.2010.06.021
10 https://doi.org/10.1016/j.jalgebra.2010.10.019
11 https://doi.org/10.1016/j.jalgebra.2014.06.019
12 https://doi.org/10.1017/cbo9780511994777
13 https://doi.org/10.1080/00927879108824318
14 https://doi.org/10.1090/s0002-9947-1987-0896007-9
15 https://doi.org/10.1142/s0219199715500534
16 https://doi.org/10.4153/cmb-2005-043-4
17 https://doi.org/10.4171/jems/711
18 https://doi.org/10.4171/rmi/961
19 schema:datePublished 2019-02-14
20 schema:datePublishedReg 2019-02-14
21 schema:description We show that all unipotent classes in finite simple Chevalley or Steinberg groups, different from PSLn(q) and PSp2n(q), collapse (i.e. are never the support of a finite-dimensional Nichols algebra), with a possible exception on one class of involutions in PSUn(2m).
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf sg:journal.1136385
26 schema:name Finite-Dimensional Pointed Hopf Algebras Over Finite Simple Groups of Lie Type IV. Unipotent Classes in Chevalley and Steinberg Groups
27 schema:pagination 1-35
28 schema:productId N24f834322e5c4c60858e1dcbb53cf612
29 Nbb35da9e912d403486a0fbbc97b14eaa
30 Ne1ebaa7985ea4fc5a73bb11045688f61
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112141640
32 https://doi.org/10.1007/s10468-019-09868-6
33 schema:sdDatePublished 2019-04-11T09:06
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nb8d6d586dc5b4c4db31f165de2754901
36 schema:url https://link.springer.com/10.1007%2Fs10468-019-09868-6
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N24f834322e5c4c60858e1dcbb53cf612 schema:name dimensions_id
41 schema:value pub.1112141640
42 rdf:type schema:PropertyValue
43 N599cdbff429c4214b2fd4e1fbdb3dd0c rdf:first N98b0c29c8f31417d991415ccffe968e4
44 rdf:rest rdf:nil
45 N66624939a96e4689b69e315e8f4dad5c schema:affiliation N6d2b48b4d5634e758365e4b5beba8e1d
46 schema:familyName Carnovale
47 schema:givenName Giovanna
48 rdf:type schema:Person
49 N687c367a99d246f988d37df8cf979314 rdf:first Nee1e74f676f8428eb50af7b95d86cf3b
50 rdf:rest Nee472bfdec9746ccb67dbafd55ce9ac9
51 N6d2b48b4d5634e758365e4b5beba8e1d schema:name Dipartimento di Matematica Tullio Levi-Civita, Università degli Studi di Padova, via Trieste 63, 35121, Padova, Italy
52 rdf:type schema:Organization
53 N98b0c29c8f31417d991415ccffe968e4 schema:affiliation https://www.grid.ac/institutes/grid.9499.d
54 schema:familyName García
55 schema:givenName Gastón Andrés
56 rdf:type schema:Person
57 Nb8d6d586dc5b4c4db31f165de2754901 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nbb35da9e912d403486a0fbbc97b14eaa schema:name readcube_id
60 schema:value 34bc7a6e92ad77cf20e0725133c73b66c8637bf5aa61a20dbe6205fe6ce7b67d
61 rdf:type schema:PropertyValue
62 Ne1ebaa7985ea4fc5a73bb11045688f61 schema:name doi
63 schema:value 10.1007/s10468-019-09868-6
64 rdf:type schema:PropertyValue
65 Nee1e74f676f8428eb50af7b95d86cf3b schema:affiliation https://www.grid.ac/institutes/grid.10692.3c
66 schema:familyName Andruskiewitsch
67 schema:givenName Nicolás
68 rdf:type schema:Person
69 Nee472bfdec9746ccb67dbafd55ce9ac9 rdf:first N66624939a96e4689b69e315e8f4dad5c
70 rdf:rest N599cdbff429c4214b2fd4e1fbdb3dd0c
71 sg:journal.1136385 schema:issn 1386-923X
72 1572-9079
73 schema:name Algebras and Representation Theory
74 rdf:type schema:Periodical
75 sg:pub.10.1007/978-0-8176-4840-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010773406
76 https://doi.org/10.1007/978-0-8176-4840-4
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/978-3-319-65427-0_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092428245
79 https://doi.org/10.1007/978-3-319-65427-0_4
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/978-3-642-61804-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109710361
82 https://doi.org/10.1007/978-3-642-61804-8
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s10231-010-0147-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034939221
85 https://doi.org/10.1007/s10231-010-0147-0
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s13373-017-0113-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1093110665
88 https://doi.org/10.1007/s13373-017-0113-x
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0021-8693(68)90020-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026268911
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.jalgebra.2007.01.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011350694
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.jalgebra.2010.06.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003900856
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.jalgebra.2010.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046750001
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.jalgebra.2014.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009921468
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1017/cbo9780511994777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098663919
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1080/00927879108824318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025554967
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1090/s0002-9947-1987-0896007-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035294837
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1142/s0219199715500534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062991622
107 rdf:type schema:CreativeWork
108 https://doi.org/10.4153/cmb-2005-043-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072272622
109 rdf:type schema:CreativeWork
110 https://doi.org/10.4171/jems/711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085626014
111 rdf:type schema:CreativeWork
112 https://doi.org/10.4171/rmi/961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092076991
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.10692.3c schema:alternateName National University of Córdoba
115 schema:name FaMAF, Universidad Nacional de Córdoba, CIEM – CONICET, Medina Allende s/n (5000) Ciudad Universitaria, Córdoba, Argentina
116 rdf:type schema:Organization
117 https://www.grid.ac/institutes/grid.9499.d schema:alternateName National University of La Plata
118 schema:name Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, C. C. 172, 1900, La Plata, Argentina
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...