On Morita Equivalences Between KLR Algebras and VV Algebras View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-02

AUTHORS

Ruari Walker

ABSTRACT

This paper is investigative work into the properties of a family of graded algebras recently defined by Varagnolo and Vasserot, which we call VV algebras. We compare categories of modules over KLR algebras with categories of modules over VV algebras, establishing various Morita equivalences. Using these Morita equivalences we are able to prove several properties of certain classes of VV algebras such as (graded) affine cellularity and affine quasi-heredity. More... »

PAGES

759-794

References to SciGraph publications

  • 2014-04-09. Affine cellular algebras and Morita equivalences in ARCHIV DER MATHEMATIK
  • 1996-12. Cellular algebras in INVENTIONES MATHEMATICAE
  • 2011-02-19. Canonical bases and affine Hecke algebras of type B in INVENTIONES MATHEMATICAE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10468-019-09865-9

    DOI

    http://dx.doi.org/10.1007/s10468-019-09865-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112504478


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 Paris Diderot-Paris 7, B\u00e2timent Sophie Germain, 75205 Paris Cedex 13, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.508487.6", 
              "name": [
                "Universit\u00e9 Paris Diderot-Paris 7, B\u00e2timent Sophie Germain, 75205 Paris Cedex 13, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Walker", 
            "givenName": "Ruari", 
            "id": "sg:person.010000561227.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010000561227.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00222-011-0314-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040631342", 
              "https://doi.org/10.1007/s00222-011-0314-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01232365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041790561", 
              "https://doi.org/10.1007/bf01232365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00013-014-0634-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030300149", 
              "https://doi.org/10.1007/s00013-014-0634-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-02", 
        "datePublishedReg": "2019-03-02", 
        "description": "This paper is investigative work into the properties of a family of graded algebras recently defined by Varagnolo and Vasserot, which we call VV algebras. We compare categories of modules over KLR algebras with categories of modules over VV algebras, establishing various Morita equivalences. Using these Morita equivalences we are able to prove several properties of certain classes of VV algebras such as (graded) affine cellularity and affine quasi-heredity.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10468-019-09865-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136385", 
            "issn": [
              "1386-923X", 
              "1572-9079"
            ], 
            "name": "Algebras and Representation Theory", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "keywords": [
          "category of modules", 
          "Morita equivalence", 
          "KLR algebras", 
          "algebra", 
          "certain class", 
          "equivalence", 
          "Varagnolo", 
          "Vasserot", 
          "affine", 
          "properties", 
          "class", 
          "KLR", 
          "module", 
          "work", 
          "categories", 
          "family", 
          "investigative work", 
          "cellularity", 
          "paper", 
          "VV algebras", 
          "affine cellularity"
        ], 
        "name": "On Morita Equivalences Between KLR Algebras and VV Algebras", 
        "pagination": "759-794", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112504478"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10468-019-09865-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10468-019-09865-9", 
          "https://app.dimensions.ai/details/publication/pub.1112504478"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_799.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10468-019-09865-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10468-019-09865-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10468-019-09865-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10468-019-09865-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10468-019-09865-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    91 TRIPLES      22 PREDICATES      49 URIs      38 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10468-019-09865-9 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N0b871c71ee5f4bd2bc07b45a668967de
    4 schema:citation sg:pub.10.1007/bf01232365
    5 sg:pub.10.1007/s00013-014-0634-4
    6 sg:pub.10.1007/s00222-011-0314-y
    7 schema:datePublished 2019-03-02
    8 schema:datePublishedReg 2019-03-02
    9 schema:description This paper is investigative work into the properties of a family of graded algebras recently defined by Varagnolo and Vasserot, which we call VV algebras. We compare categories of modules over KLR algebras with categories of modules over VV algebras, establishing various Morita equivalences. Using these Morita equivalences we are able to prove several properties of certain classes of VV algebras such as (graded) affine cellularity and affine quasi-heredity.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N0eaf00d82f2c46839fa544327cfcbae7
    14 N74258a379e70498ab5b237444cac0ade
    15 sg:journal.1136385
    16 schema:keywords KLR
    17 KLR algebras
    18 Morita equivalence
    19 VV algebras
    20 Varagnolo
    21 Vasserot
    22 affine
    23 affine cellularity
    24 algebra
    25 categories
    26 category of modules
    27 cellularity
    28 certain class
    29 class
    30 equivalence
    31 family
    32 investigative work
    33 module
    34 paper
    35 properties
    36 work
    37 schema:name On Morita Equivalences Between KLR Algebras and VV Algebras
    38 schema:pagination 759-794
    39 schema:productId Na76c0641ca9643269c2196636d1a43e1
    40 Nc2a543aa93e9490db414307550933114
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112504478
    42 https://doi.org/10.1007/s10468-019-09865-9
    43 schema:sdDatePublished 2021-12-01T19:44
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Nd4482bd5f669401ba73c962a58722aaf
    46 schema:url https://doi.org/10.1007/s10468-019-09865-9
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N0b871c71ee5f4bd2bc07b45a668967de rdf:first sg:person.010000561227.61
    51 rdf:rest rdf:nil
    52 N0eaf00d82f2c46839fa544327cfcbae7 schema:volumeNumber 23
    53 rdf:type schema:PublicationVolume
    54 N74258a379e70498ab5b237444cac0ade schema:issueNumber 3
    55 rdf:type schema:PublicationIssue
    56 Na76c0641ca9643269c2196636d1a43e1 schema:name dimensions_id
    57 schema:value pub.1112504478
    58 rdf:type schema:PropertyValue
    59 Nc2a543aa93e9490db414307550933114 schema:name doi
    60 schema:value 10.1007/s10468-019-09865-9
    61 rdf:type schema:PropertyValue
    62 Nd4482bd5f669401ba73c962a58722aaf schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Mathematical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Pure Mathematics
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1136385 schema:issn 1386-923X
    71 1572-9079
    72 schema:name Algebras and Representation Theory
    73 schema:publisher Springer Nature
    74 rdf:type schema:Periodical
    75 sg:person.010000561227.61 schema:affiliation grid-institutes:grid.508487.6
    76 schema:familyName Walker
    77 schema:givenName Ruari
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010000561227.61
    79 rdf:type schema:Person
    80 sg:pub.10.1007/bf01232365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041790561
    81 https://doi.org/10.1007/bf01232365
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/s00013-014-0634-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030300149
    84 https://doi.org/10.1007/s00013-014-0634-4
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/s00222-011-0314-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1040631342
    87 https://doi.org/10.1007/s00222-011-0314-y
    88 rdf:type schema:CreativeWork
    89 grid-institutes:grid.508487.6 schema:alternateName Université Paris Diderot-Paris 7, Bâtiment Sophie Germain, 75205 Paris Cedex 13, Paris, France
    90 schema:name Université Paris Diderot-Paris 7, Bâtiment Sophie Germain, 75205 Paris Cedex 13, Paris, France
    91 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...