On Morita Equivalences Between KLR Algebras and VV Algebras View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-02

AUTHORS

Ruari Walker

ABSTRACT

This paper is investigative work into the properties of a family of graded algebras recently defined by Varagnolo and Vasserot, which we call VV algebras. We compare categories of modules over KLR algebras with categories of modules over VV algebras, establishing various Morita equivalences. Using these Morita equivalences we are able to prove several properties of certain classes of VV algebras such as (graded) affine cellularity and affine quasi-heredity. More... »

PAGES

1-36

References to SciGraph publications

  • 2014-04. Affine cellular algebras and Morita equivalences in ARCHIV DER MATHEMATIK
  • 1996-12. Cellular algebras in INVENTIONES MATHEMATICAE
  • 2011-09. Canonical bases and affine Hecke algebras of type B in INVENTIONES MATHEMATICAE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10468-019-09865-9

    DOI

    http://dx.doi.org/10.1007/s10468-019-09865-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112504478


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Paris Diderot University", 
              "id": "https://www.grid.ac/institutes/grid.7452.4", 
              "name": [
                "Universit\u00e9 Paris Diderot-Paris 7, B\u00e2timent Sophie Germain, 75205 Paris Cedex 13, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Walker", 
            "givenName": "Ruari", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.aim.2011.08.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007897352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00013-014-0634-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030300149", 
              "https://doi.org/10.1007/s00013-014-0634-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/plms/pdv004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037414689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/jlms/jdt023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038457563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-011-0314-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040631342", 
              "https://doi.org/10.1007/s00222-011-0314-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01232365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041790561", 
              "https://doi.org/10.1007/bf01232365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s1088-4165-09-00346-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047837251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/00127094-2681278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064411386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2977/prims/1216238305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070935842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789814651813_0004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088744509"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-02", 
        "datePublishedReg": "2019-03-02", 
        "description": "This paper is investigative work into the properties of a family of graded algebras recently defined by Varagnolo and Vasserot, which we call VV algebras. We compare categories of modules over KLR algebras with categories of modules over VV algebras, establishing various Morita equivalences. Using these Morita equivalences we are able to prove several properties of certain classes of VV algebras such as (graded) affine cellularity and affine quasi-heredity.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10468-019-09865-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136385", 
            "issn": [
              "1386-923X", 
              "1572-9079"
            ], 
            "name": "Algebras and Representation Theory", 
            "type": "Periodical"
          }
        ], 
        "name": "On Morita Equivalences Between KLR Algebras and VV Algebras", 
        "pagination": "1-36", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "57d1e5285dea912c730325a9c2b7ea9065a2ea00cd5d8f542dce316d4a1fbb98"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10468-019-09865-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112504478"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10468-019-09865-9", 
          "https://app.dimensions.ai/details/publication/pub.1112504478"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77548_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10468-019-09865-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10468-019-09865-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10468-019-09865-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10468-019-09865-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10468-019-09865-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    87 TRIPLES      21 PREDICATES      34 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10468-019-09865-9 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N039a5655764f43ecb867369ef75943b5
    4 schema:citation sg:pub.10.1007/bf01232365
    5 sg:pub.10.1007/s00013-014-0634-4
    6 sg:pub.10.1007/s00222-011-0314-y
    7 https://doi.org/10.1016/j.aim.2011.08.010
    8 https://doi.org/10.1090/s1088-4165-09-00346-x
    9 https://doi.org/10.1112/jlms/jdt023
    10 https://doi.org/10.1112/plms/pdv004
    11 https://doi.org/10.1142/9789814651813_0004
    12 https://doi.org/10.1215/00127094-2681278
    13 https://doi.org/10.2977/prims/1216238305
    14 schema:datePublished 2019-03-02
    15 schema:datePublishedReg 2019-03-02
    16 schema:description This paper is investigative work into the properties of a family of graded algebras recently defined by Varagnolo and Vasserot, which we call VV algebras. We compare categories of modules over KLR algebras with categories of modules over VV algebras, establishing various Morita equivalences. Using these Morita equivalences we are able to prove several properties of certain classes of VV algebras such as (graded) affine cellularity and affine quasi-heredity.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf sg:journal.1136385
    21 schema:name On Morita Equivalences Between KLR Algebras and VV Algebras
    22 schema:pagination 1-36
    23 schema:productId Nccccac6627e5435da4166d2e734795c0
    24 Nd8f81a25c5fb4b698085c3ca2159e0fe
    25 Nfcf63ac717c0444c9de536e509ba0916
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112504478
    27 https://doi.org/10.1007/s10468-019-09865-9
    28 schema:sdDatePublished 2019-04-11T10:48
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher Nee6245d8a888494c94870fe3afdd7f43
    31 schema:url https://link.springer.com/10.1007%2Fs10468-019-09865-9
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N039a5655764f43ecb867369ef75943b5 rdf:first Nb0aec30e793f44b8bf2b557ab00bb9e9
    36 rdf:rest rdf:nil
    37 Nb0aec30e793f44b8bf2b557ab00bb9e9 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
    38 schema:familyName Walker
    39 schema:givenName Ruari
    40 rdf:type schema:Person
    41 Nccccac6627e5435da4166d2e734795c0 schema:name dimensions_id
    42 schema:value pub.1112504478
    43 rdf:type schema:PropertyValue
    44 Nd8f81a25c5fb4b698085c3ca2159e0fe schema:name doi
    45 schema:value 10.1007/s10468-019-09865-9
    46 rdf:type schema:PropertyValue
    47 Nee6245d8a888494c94870fe3afdd7f43 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 Nfcf63ac717c0444c9de536e509ba0916 schema:name readcube_id
    50 schema:value 57d1e5285dea912c730325a9c2b7ea9065a2ea00cd5d8f542dce316d4a1fbb98
    51 rdf:type schema:PropertyValue
    52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Mathematical Sciences
    54 rdf:type schema:DefinedTerm
    55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Pure Mathematics
    57 rdf:type schema:DefinedTerm
    58 sg:journal.1136385 schema:issn 1386-923X
    59 1572-9079
    60 schema:name Algebras and Representation Theory
    61 rdf:type schema:Periodical
    62 sg:pub.10.1007/bf01232365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041790561
    63 https://doi.org/10.1007/bf01232365
    64 rdf:type schema:CreativeWork
    65 sg:pub.10.1007/s00013-014-0634-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030300149
    66 https://doi.org/10.1007/s00013-014-0634-4
    67 rdf:type schema:CreativeWork
    68 sg:pub.10.1007/s00222-011-0314-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1040631342
    69 https://doi.org/10.1007/s00222-011-0314-y
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1016/j.aim.2011.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007897352
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1090/s1088-4165-09-00346-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047837251
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1112/jlms/jdt023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038457563
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1112/plms/pdv004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037414689
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1142/9789814651813_0004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088744509
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1215/00127094-2681278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064411386
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.2977/prims/1216238305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070935842
    84 rdf:type schema:CreativeWork
    85 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
    86 schema:name Université Paris Diderot-Paris 7, Bâtiment Sophie Germain, 75205 Paris Cedex 13, Paris, France
    87 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...