Leibniz Algebras Associated with Representations of the Diamond Lie Algebra View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02

AUTHORS

Selman Uguz, Iqbol A. Karimjanov, Bakhrom A. Omirov

ABSTRACT

In this paper we describe some Leibniz algebras whose corresponding Lie algebra is four-dimensional Diamond Lie algebra D and the ideal generated by the squares of elements (further denoted by I) is a right D-module. Using description (Casati et al J. Math. Phys. 51: 033515 (2010)) of representations of algebra D in ????(3,C) and ????(4,F) where F=R or C we obtain the classification of above mentioned Leibniz algebras. Moreover, Fock representation of Heisenberg Lie algebra was extended to the case of the algebra D. Classification of Leibniz algebras with corresponding Lie algebra D and with the ideal I as a Fock right D-module is presented. The linear integrable deformations in terms of the second cohomology groups of obtained finite-dimensional Leibniz algebras are described. Two computer programs in Mathematica 10 which help to calculate for a given Leibniz algebra the general form of elements of spaces BL2 and ZL2 are constructed, as well. More... »

PAGES

175-195

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10468-016-9636-1

DOI

http://dx.doi.org/10.1007/s10468-016-9636-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007698800


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harran University", 
          "id": "https://www.grid.ac/institutes/grid.411999.d", 
          "name": [
            "Department of Mathematics, Arts and Sciences Faculty, Harran University, 63120, Sanliurfa, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uguz", 
        "givenName": "Selman", 
        "id": "sg:person.014255257731.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014255257731.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Santiago de Compostela", 
          "id": "https://www.grid.ac/institutes/grid.11794.3a", 
          "name": [
            "Department of Algebra, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karimjanov", 
        "givenName": "Iqbol A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Uzbekistan", 
          "id": "https://www.grid.ac/institutes/grid.23471.33", 
          "name": [
            "Institute of Mathematics, National University of Uzbekistan, Dormon yoli str. 29, 100125, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Omirov", 
        "givenName": "Bakhrom A.", 
        "id": "sg:person.014500267073.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014500267073.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00927879608825618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003024636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.3751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006230525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.3751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006230525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1995.467.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008404131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01445099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018121369", 
          "https://doi.org/10.1007/bf01445099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01445099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018121369", 
          "https://doi.org/10.1007/bf01445099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081087.2012.703194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029802606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalgebra.2006.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033156624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1966-11401-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034643670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2012.11.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036484326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00927872.2010.551532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040093986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomphys.2014.07.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043907196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomphys.2013.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048881761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0004972711002954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050336165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3316063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057935678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3316063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057935678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675809"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02", 
    "datePublishedReg": "2017-02-01", 
    "description": "In this paper we describe some Leibniz algebras whose corresponding Lie algebra is four-dimensional Diamond Lie algebra D and the ideal generated by the squares of elements (further denoted by I) is a right D-module. Using description (Casati et al J. Math. Phys. 51: 033515 (2010)) of representations of algebra D in ????(3,C) and ????(4,F) where F=R or C we obtain the classification of above mentioned Leibniz algebras. Moreover, Fock representation of Heisenberg Lie algebra was extended to the case of the algebra D. Classification of Leibniz algebras with corresponding Lie algebra D and with the ideal I as a Fock right D-module is presented. The linear integrable deformations in terms of the second cohomology groups of obtained finite-dimensional Leibniz algebras are described. Two computer programs in Mathematica 10 which help to calculate for a given Leibniz algebra the general form of elements of spaces BL2 and ZL2 are constructed, as well.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10468-016-9636-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136385", 
        "issn": [
          "1386-923X", 
          "1572-9079"
        ], 
        "name": "Algebras and Representation Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Leibniz Algebras Associated with Representations of the Diamond Lie Algebra", 
    "pagination": "175-195", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "24abc8d7b635f7e68294020593a2586c67a9b0b61dcbd2c8c0b68e5e3239fef9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10468-016-9636-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007698800"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10468-016-9636-1", 
      "https://app.dimensions.ai/details/publication/pub.1007698800"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87100_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10468-016-9636-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10468-016-9636-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10468-016-9636-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10468-016-9636-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10468-016-9636-1'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10468-016-9636-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5a49a8f0831d4482958c65acdf868223
4 schema:citation sg:pub.10.1007/bf01445099
5 https://doi.org/10.1016/j.geomphys.2013.08.015
6 https://doi.org/10.1016/j.geomphys.2014.07.034
7 https://doi.org/10.1016/j.jalgebra.2006.01.004
8 https://doi.org/10.1016/j.laa.2012.11.023
9 https://doi.org/10.1017/s0004972711002954
10 https://doi.org/10.1063/1.3316063
11 https://doi.org/10.1080/00927872.2010.551532
12 https://doi.org/10.1080/00927879608825618
13 https://doi.org/10.1080/03081087.2012.703194
14 https://doi.org/10.1090/s0002-9904-1966-11401-5
15 https://doi.org/10.1103/physrevlett.71.3751
16 https://doi.org/10.1515/crll.1995.467.67
17 https://doi.org/10.2307/1970484
18 schema:datePublished 2017-02
19 schema:datePublishedReg 2017-02-01
20 schema:description In this paper we describe some Leibniz algebras whose corresponding Lie algebra is four-dimensional Diamond Lie algebra D and the ideal generated by the squares of elements (further denoted by I) is a right D-module. Using description (Casati et al J. Math. Phys. 51: 033515 (2010)) of representations of algebra D in ????(3,C) and ????(4,F) where F=R or C we obtain the classification of above mentioned Leibniz algebras. Moreover, Fock representation of Heisenberg Lie algebra was extended to the case of the algebra D. Classification of Leibniz algebras with corresponding Lie algebra D and with the ideal I as a Fock right D-module is presented. The linear integrable deformations in terms of the second cohomology groups of obtained finite-dimensional Leibniz algebras are described. Two computer programs in Mathematica 10 which help to calculate for a given Leibniz algebra the general form of elements of spaces BL2 and ZL2 are constructed, as well.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N3a2254fc1541458fbc2b7430888b486a
25 Na37d58d68be449618b6591cffe4bc514
26 sg:journal.1136385
27 schema:name Leibniz Algebras Associated with Representations of the Diamond Lie Algebra
28 schema:pagination 175-195
29 schema:productId N7367775ef54e453381ea7930931c9228
30 N925dba5f0a3540d5bf8888f94ef5ae31
31 Ne06aea326b1e433d8ce3760a4af65e8b
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007698800
33 https://doi.org/10.1007/s10468-016-9636-1
34 schema:sdDatePublished 2019-04-11T12:24
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nd1a1a97beb99401f87ba3efda2bb8f82
37 schema:url https://link.springer.com/10.1007%2Fs10468-016-9636-1
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N3a2254fc1541458fbc2b7430888b486a schema:issueNumber 1
42 rdf:type schema:PublicationIssue
43 N43a5a00b2fc3439a97818489623af268 rdf:first sg:person.014500267073.48
44 rdf:rest rdf:nil
45 N5a49a8f0831d4482958c65acdf868223 rdf:first sg:person.014255257731.86
46 rdf:rest Nc3c7832ba5924d6fa274dd65913db6ad
47 N7367775ef54e453381ea7930931c9228 schema:name doi
48 schema:value 10.1007/s10468-016-9636-1
49 rdf:type schema:PropertyValue
50 N925dba5f0a3540d5bf8888f94ef5ae31 schema:name readcube_id
51 schema:value 24abc8d7b635f7e68294020593a2586c67a9b0b61dcbd2c8c0b68e5e3239fef9
52 rdf:type schema:PropertyValue
53 Na37d58d68be449618b6591cffe4bc514 schema:volumeNumber 20
54 rdf:type schema:PublicationVolume
55 Nc3c7832ba5924d6fa274dd65913db6ad rdf:first Nd1da7727a5c348f4a90362b363528b0c
56 rdf:rest N43a5a00b2fc3439a97818489623af268
57 Nd1a1a97beb99401f87ba3efda2bb8f82 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nd1da7727a5c348f4a90362b363528b0c schema:affiliation https://www.grid.ac/institutes/grid.11794.3a
60 schema:familyName Karimjanov
61 schema:givenName Iqbol A.
62 rdf:type schema:Person
63 Ne06aea326b1e433d8ce3760a4af65e8b schema:name dimensions_id
64 schema:value pub.1007698800
65 rdf:type schema:PropertyValue
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1136385 schema:issn 1386-923X
73 1572-9079
74 schema:name Algebras and Representation Theory
75 rdf:type schema:Periodical
76 sg:person.014255257731.86 schema:affiliation https://www.grid.ac/institutes/grid.411999.d
77 schema:familyName Uguz
78 schema:givenName Selman
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014255257731.86
80 rdf:type schema:Person
81 sg:person.014500267073.48 schema:affiliation https://www.grid.ac/institutes/grid.23471.33
82 schema:familyName Omirov
83 schema:givenName Bakhrom A.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014500267073.48
85 rdf:type schema:Person
86 sg:pub.10.1007/bf01445099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018121369
87 https://doi.org/10.1007/bf01445099
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.geomphys.2013.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048881761
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.geomphys.2014.07.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043907196
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.jalgebra.2006.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033156624
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.laa.2012.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036484326
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1017/s0004972711002954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050336165
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1063/1.3316063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057935678
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1080/00927872.2010.551532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040093986
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1080/00927879608825618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003024636
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1080/03081087.2012.703194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029802606
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1090/s0002-9904-1966-11401-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034643670
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevlett.71.3751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006230525
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1515/crll.1995.467.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008404131
112 rdf:type schema:CreativeWork
113 https://doi.org/10.2307/1970484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675809
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.11794.3a schema:alternateName University of Santiago de Compostela
116 schema:name Department of Algebra, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
117 rdf:type schema:Organization
118 https://www.grid.ac/institutes/grid.23471.33 schema:alternateName National University of Uzbekistan
119 schema:name Institute of Mathematics, National University of Uzbekistan, Dormon yoli str. 29, 100125, Tashkent, Uzbekistan
120 rdf:type schema:Organization
121 https://www.grid.ac/institutes/grid.411999.d schema:alternateName Harran University
122 schema:name Department of Mathematics, Arts and Sciences Faculty, Harran University, 63120, Sanliurfa, Turkey
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...