A Construction of Totally Reflexive Modules View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-02

AUTHORS

Hamid Rahmati, Janet Striuli, Roger Wiegand

ABSTRACT

We construct infinite families of pairwise non-isomorphic indecomposable totally reflexive modules of high multiplicity. Under suitable conditions on the totally reflexive modules M and N, we find infinitely many non-isomorphic indecomposable modules arising as extensions of M by N. The construction uses the bimodule structure of ExtR1((M,N) over the endomorphism rings of N and M. Our results compare with a recent theorem of Celikbas, Gheibi and Takahashi, and broaden the scope of that theorem. More... »

PAGES

103-111

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10468-015-9564-5

DOI

http://dx.doi.org/10.1007/s10468-015-9564-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051733280


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Miami University", 
          "id": "https://www.grid.ac/institutes/grid.259956.4", 
          "name": [
            "Department of Mathematics Miami University, 45056, Oxford, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rahmati", 
        "givenName": "Hamid", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fairfield University", 
          "id": "https://www.grid.ac/institutes/grid.255794.8", 
          "name": [
            "Department of Mathematics Fairfield University, 06824, Fairfield, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Striuli", 
        "givenName": "Janet", 
        "id": "sg:person.0747016704.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747016704.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics University of Nebraska, 68588-0130, Lincoln, NE, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wiegand", 
        "givenName": "Roger", 
        "id": "sg:person.01034341142.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034341142.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jalgebra.2011.09.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005737094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2008.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020244787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalgebra.2004.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022792719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1966-0191935-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025860354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/blms/bdq104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029784080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02698901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036483094", 
          "https://doi.org/10.1007/bf02698901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10468-013-9432-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042701343", 
          "https://doi.org/10.1007/s10468-013-9432-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalgebra.2006.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046693092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-09-09760-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059332177"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02", 
    "datePublishedReg": "2016-02-01", 
    "description": "We construct infinite families of pairwise non-isomorphic indecomposable totally reflexive modules of high multiplicity. Under suitable conditions on the totally reflexive modules M and N, we find infinitely many non-isomorphic indecomposable modules arising as extensions of M by N. The construction uses the bimodule structure of ExtR1((M,N) over the endomorphism rings of N and M. Our results compare with a recent theorem of Celikbas, Gheibi and Takahashi, and broaden the scope of that theorem.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10468-015-9564-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136385", 
        "issn": [
          "1386-923X", 
          "1572-9079"
        ], 
        "name": "Algebras and Representation Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "A Construction of Totally Reflexive Modules", 
    "pagination": "103-111", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f66e387d4fc950faee0a0f82676ba412673b0adc74e3a0887f9fc5ce9917f711"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10468-015-9564-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051733280"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10468-015-9564-5", 
      "https://app.dimensions.ai/details/publication/pub.1051733280"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10468-015-9564-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10468-015-9564-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10468-015-9564-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10468-015-9564-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10468-015-9564-5'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10468-015-9564-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N57fecf3e71b04d7f9f1892178a2f939e
4 schema:citation sg:pub.10.1007/bf02698901
5 sg:pub.10.1007/s10468-013-9432-0
6 https://doi.org/10.1016/j.aim.2008.03.005
7 https://doi.org/10.1016/j.jalgebra.2004.11.002
8 https://doi.org/10.1016/j.jalgebra.2006.05.016
9 https://doi.org/10.1016/j.jalgebra.2011.09.042
10 https://doi.org/10.1090/s0002-9939-09-09760-3
11 https://doi.org/10.1090/s0002-9947-1966-0191935-0
12 https://doi.org/10.1112/blms/bdq104
13 schema:datePublished 2016-02
14 schema:datePublishedReg 2016-02-01
15 schema:description We construct infinite families of pairwise non-isomorphic indecomposable totally reflexive modules of high multiplicity. Under suitable conditions on the totally reflexive modules M and N, we find infinitely many non-isomorphic indecomposable modules arising as extensions of M by N. The construction uses the bimodule structure of ExtR1((M,N) over the endomorphism rings of N and M. Our results compare with a recent theorem of Celikbas, Gheibi and Takahashi, and broaden the scope of that theorem.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N28872685030d43c9b78a9b80d13ee296
20 N2953285885d249988aa88c5841729ae7
21 sg:journal.1136385
22 schema:name A Construction of Totally Reflexive Modules
23 schema:pagination 103-111
24 schema:productId N262b44310681446c973ee6c45602d8bb
25 N40d23b414bec42e0843f07d9369fe251
26 N61091b6510904bb38041da04ae52db4f
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051733280
28 https://doi.org/10.1007/s10468-015-9564-5
29 schema:sdDatePublished 2019-04-11T02:03
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N7be370340a9e47ad949010e9d26acb44
32 schema:url http://link.springer.com/10.1007%2Fs10468-015-9564-5
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N140d40e6c1044a9889996769e8a19833 schema:name Department of Mathematics University of Nebraska, 68588-0130, Lincoln, NE, USA
37 rdf:type schema:Organization
38 N262b44310681446c973ee6c45602d8bb schema:name dimensions_id
39 schema:value pub.1051733280
40 rdf:type schema:PropertyValue
41 N28872685030d43c9b78a9b80d13ee296 schema:volumeNumber 19
42 rdf:type schema:PublicationVolume
43 N2953285885d249988aa88c5841729ae7 schema:issueNumber 1
44 rdf:type schema:PublicationIssue
45 N295a2c1ecf404b6b90102919ec6613c0 rdf:first sg:person.0747016704.21
46 rdf:rest Nd81a3b78139a45bbb893f8f36fcad433
47 N40d23b414bec42e0843f07d9369fe251 schema:name readcube_id
48 schema:value f66e387d4fc950faee0a0f82676ba412673b0adc74e3a0887f9fc5ce9917f711
49 rdf:type schema:PropertyValue
50 N57fecf3e71b04d7f9f1892178a2f939e rdf:first Naf918644945b447fa30e41966307260f
51 rdf:rest N295a2c1ecf404b6b90102919ec6613c0
52 N61091b6510904bb38041da04ae52db4f schema:name doi
53 schema:value 10.1007/s10468-015-9564-5
54 rdf:type schema:PropertyValue
55 N7be370340a9e47ad949010e9d26acb44 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Naf918644945b447fa30e41966307260f schema:affiliation https://www.grid.ac/institutes/grid.259956.4
58 schema:familyName Rahmati
59 schema:givenName Hamid
60 rdf:type schema:Person
61 Nd81a3b78139a45bbb893f8f36fcad433 rdf:first sg:person.01034341142.80
62 rdf:rest rdf:nil
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
67 schema:name Pure Mathematics
68 rdf:type schema:DefinedTerm
69 sg:journal.1136385 schema:issn 1386-923X
70 1572-9079
71 schema:name Algebras and Representation Theory
72 rdf:type schema:Periodical
73 sg:person.01034341142.80 schema:affiliation N140d40e6c1044a9889996769e8a19833
74 schema:familyName Wiegand
75 schema:givenName Roger
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034341142.80
77 rdf:type schema:Person
78 sg:person.0747016704.21 schema:affiliation https://www.grid.ac/institutes/grid.255794.8
79 schema:familyName Striuli
80 schema:givenName Janet
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747016704.21
82 rdf:type schema:Person
83 sg:pub.10.1007/bf02698901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036483094
84 https://doi.org/10.1007/bf02698901
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s10468-013-9432-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042701343
87 https://doi.org/10.1007/s10468-013-9432-0
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.aim.2008.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020244787
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.jalgebra.2004.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022792719
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.jalgebra.2006.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046693092
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.jalgebra.2011.09.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005737094
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1090/s0002-9939-09-09760-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059332177
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1090/s0002-9947-1966-0191935-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025860354
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1112/blms/bdq104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029784080
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.255794.8 schema:alternateName Fairfield University
104 schema:name Department of Mathematics Fairfield University, 06824, Fairfield, CT, USA
105 rdf:type schema:Organization
106 https://www.grid.ac/institutes/grid.259956.4 schema:alternateName Miami University
107 schema:name Department of Mathematics Miami University, 45056, Oxford, OH, USA
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...