Fixed accuracy estimation of parameters in a threshold autoregressive model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-18

AUTHORS

Victor V. Konev, Sergey E. Vorobeychikov

ABSTRACT

For parameters in a threshold autoregressive process, the paper proposes a sequential modification of the least squares estimates with a specific stopping rule for collecting the data for each parameter. In the case of normal residuals, these estimates are exactly normally distributed in a wide range of unknown parameters. On the base of these estimates, a fixed-size confidence ellipsoid covering true values of parameters with prescribed probability is constructed. In the i.i.d. case with unspecified error distributions, the sequential estimates are asymptotically normally distributed uniformly in parameters belonging to any compact set in the ergodicity parametric region. Small-sample behavior of the estimates is studied via simulation data. More... »

PAGES

1-27

References to SciGraph publications

  • 1978. On a Threshold Model in PATTERN RECOGNITION AND SIGNAL PROCESSING
  • 1983. Markov Chains in NONE
  • 2013-04-07. Estimation in threshold autoregressive models with correlated innovations in ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS
  • 1996. Probability in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10463-021-00812-4

    DOI

    http://dx.doi.org/10.1007/s10463-021-00812-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1141966719


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Applied Mathematics and Computer Science, Tomsk State University, Lenina str. 36, 634050, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77602.34", 
              "name": [
                "Institute of Applied Mathematics and Computer Science, Tomsk State University, Lenina str. 36, 634050, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Konev", 
            "givenName": "Victor V.", 
            "id": "sg:person.012755716462.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012755716462.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Applied Mathematics and Computer Science, Tomsk State University, Lenina str. 36, 634050, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77602.34", 
              "name": [
                "Institute of Applied Mathematics and Computer Science, Tomsk State University, Lenina str. 36, 634050, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vorobeychikov", 
            "givenName": "Sergey E.", 
            "id": "sg:person.014350657462.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014350657462.75"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-009-9941-1_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089776101", 
              "https://doi.org/10.1007/978-94-009-9941-1_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10463-013-0402-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047437875", 
              "https://doi.org/10.1007/s10463-013-0402-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2539-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038602576", 
              "https://doi.org/10.1007/978-1-4757-2539-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5500-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007047452", 
              "https://doi.org/10.1007/978-1-4612-5500-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-10-18", 
        "datePublishedReg": "2021-10-18", 
        "description": "For parameters in a threshold autoregressive process, the paper proposes a sequential modification of the least squares estimates with a specific stopping rule for collecting the data for each parameter. In the case of normal residuals, these estimates are exactly normally distributed in a wide range of unknown parameters. On the base of these estimates, a fixed-size confidence ellipsoid covering true values of parameters with prescribed probability is constructed. In the i.i.d. case with unspecified error distributions, the sequential estimates are asymptotically normally distributed uniformly in parameters belonging to any compact set in the ergodicity parametric region. Small-sample behavior of the estimates is studied via simulation data.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10463-021-00812-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041657", 
            "issn": [
              "0020-3157", 
              "1572-9052"
            ], 
            "name": "Annals of the Institute of Statistical Mathematics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "accuracy estimation", 
          "simulation data", 
          "compact set", 
          "prescribed probability", 
          "error distribution", 
          "least squares", 
          "autoregressive model", 
          "set", 
          "rules", 
          "unknown parameters", 
          "data", 
          "wide range", 
          "true value", 
          "estimation", 
          "parameters", 
          "model", 
          "base", 
          "confidence", 
          "probability", 
          "process", 
          "autoregressive process", 
          "normal residuals", 
          "squares", 
          "residuals", 
          "cases", 
          "estimates", 
          "behavior", 
          "modification", 
          "values", 
          "distribution", 
          "range", 
          "small sample behavior", 
          "region", 
          "sequential estimates", 
          "parametric regions", 
          "threshold autoregressive model", 
          "threshold autoregressive processes", 
          "unspecified error distribution", 
          "sequential modification", 
          "paper", 
          "fixed-size confidence", 
          "ergodicity parametric region"
        ], 
        "name": "Fixed accuracy estimation of parameters in a threshold autoregressive model", 
        "pagination": "1-27", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1141966719"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10463-021-00812-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10463-021-00812-4", 
          "https://app.dimensions.ai/details/publication/pub.1141966719"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_885.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10463-021-00812-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00812-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00812-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00812-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00812-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    117 TRIPLES      22 PREDICATES      69 URIs      57 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10463-021-00812-4 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N5065da2b698e467bbddc2dd0c0e4b620
    4 schema:citation sg:pub.10.1007/978-1-4612-5500-0
    5 sg:pub.10.1007/978-1-4757-2539-1
    6 sg:pub.10.1007/978-94-009-9941-1_24
    7 sg:pub.10.1007/s10463-013-0402-4
    8 schema:datePublished 2021-10-18
    9 schema:datePublishedReg 2021-10-18
    10 schema:description For parameters in a threshold autoregressive process, the paper proposes a sequential modification of the least squares estimates with a specific stopping rule for collecting the data for each parameter. In the case of normal residuals, these estimates are exactly normally distributed in a wide range of unknown parameters. On the base of these estimates, a fixed-size confidence ellipsoid covering true values of parameters with prescribed probability is constructed. In the i.i.d. case with unspecified error distributions, the sequential estimates are asymptotically normally distributed uniformly in parameters belonging to any compact set in the ergodicity parametric region. Small-sample behavior of the estimates is studied via simulation data.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf sg:journal.1041657
    15 schema:keywords accuracy estimation
    16 autoregressive model
    17 autoregressive process
    18 base
    19 behavior
    20 cases
    21 compact set
    22 confidence
    23 data
    24 distribution
    25 ergodicity parametric region
    26 error distribution
    27 estimates
    28 estimation
    29 fixed-size confidence
    30 least squares
    31 model
    32 modification
    33 normal residuals
    34 paper
    35 parameters
    36 parametric regions
    37 prescribed probability
    38 probability
    39 process
    40 range
    41 region
    42 residuals
    43 rules
    44 sequential estimates
    45 sequential modification
    46 set
    47 simulation data
    48 small sample behavior
    49 squares
    50 threshold autoregressive model
    51 threshold autoregressive processes
    52 true value
    53 unknown parameters
    54 unspecified error distribution
    55 values
    56 wide range
    57 schema:name Fixed accuracy estimation of parameters in a threshold autoregressive model
    58 schema:pagination 1-27
    59 schema:productId N8fe8adbd946a463fbc54342e56a9bdb8
    60 Ncde6d98725dd40769535d8f18745b9d4
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141966719
    62 https://doi.org/10.1007/s10463-021-00812-4
    63 schema:sdDatePublished 2022-01-01T19:02
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher N4abc5260ad3b4bafbbc5a86a2cb84521
    66 schema:url https://doi.org/10.1007/s10463-021-00812-4
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N0c8347cf11384ae4b8681630628a3abd rdf:first sg:person.014350657462.75
    71 rdf:rest rdf:nil
    72 N4abc5260ad3b4bafbbc5a86a2cb84521 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 N5065da2b698e467bbddc2dd0c0e4b620 rdf:first sg:person.012755716462.14
    75 rdf:rest N0c8347cf11384ae4b8681630628a3abd
    76 N8fe8adbd946a463fbc54342e56a9bdb8 schema:name dimensions_id
    77 schema:value pub.1141966719
    78 rdf:type schema:PropertyValue
    79 Ncde6d98725dd40769535d8f18745b9d4 schema:name doi
    80 schema:value 10.1007/s10463-021-00812-4
    81 rdf:type schema:PropertyValue
    82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Mathematical Sciences
    84 rdf:type schema:DefinedTerm
    85 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Statistics
    87 rdf:type schema:DefinedTerm
    88 sg:journal.1041657 schema:issn 0020-3157
    89 1572-9052
    90 schema:name Annals of the Institute of Statistical Mathematics
    91 schema:publisher Springer Nature
    92 rdf:type schema:Periodical
    93 sg:person.012755716462.14 schema:affiliation grid-institutes:grid.77602.34
    94 schema:familyName Konev
    95 schema:givenName Victor V.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012755716462.14
    97 rdf:type schema:Person
    98 sg:person.014350657462.75 schema:affiliation grid-institutes:grid.77602.34
    99 schema:familyName Vorobeychikov
    100 schema:givenName Sergey E.
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014350657462.75
    102 rdf:type schema:Person
    103 sg:pub.10.1007/978-1-4612-5500-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007047452
    104 https://doi.org/10.1007/978-1-4612-5500-0
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/978-1-4757-2539-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038602576
    107 https://doi.org/10.1007/978-1-4757-2539-1
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/978-94-009-9941-1_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089776101
    110 https://doi.org/10.1007/978-94-009-9941-1_24
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s10463-013-0402-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047437875
    113 https://doi.org/10.1007/s10463-013-0402-4
    114 rdf:type schema:CreativeWork
    115 grid-institutes:grid.77602.34 schema:alternateName Institute of Applied Mathematics and Computer Science, Tomsk State University, Lenina str. 36, 634050, Tomsk, Russia
    116 schema:name Institute of Applied Mathematics and Computer Science, Tomsk State University, Lenina str. 36, 634050, Tomsk, Russia
    117 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...