Ontology type: schema:ScholarlyArticle Open Access: True
2021-09-09
AUTHORSBin Luo, Xiaoli Gao
ABSTRACTIn high-dimensional data analysis, bi-level sparsity is often assumed when covariates function group-wisely and sparsity can appear either at the group level or within certain groups. In such cases, an ideal model should be able to encourage the bi-level variable selection consistently. Bi-level variable selection has become even more challenging when data have heavy-tailed distribution or outliers exist in random errors and covariates. In this paper, we study a framework of high-dimensional M-estimation for bi-level variable selection. This framework encourages bi-level sparsity through a computationally efficient two-stage procedure. In theory, we provide sufficient conditions under which our two-stage penalized M-estimator possesses simultaneous local estimation consistency and the bi-level variable selection consistency if certain non-convex penalty functions are used at the group level. Both our simulation studies and real data analysis demonstrate satisfactory finite sample performance of the proposed estimators under different irregular settings. More... »
PAGES559-579
http://scigraph.springernature.com/pub.10.1007/s10463-021-00809-z
DOIhttp://dx.doi.org/10.1007/s10463-021-00809-z
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1141002982
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Biostatistics and Bioinformatics, Duke University, 2424 Erwin Road, 27705, Durham, NC, United States",
"id": "http://www.grid.ac/institutes/grid.26009.3d",
"name": [
"Department of Biostatistics and Bioinformatics, Duke University, 2424 Erwin Road, 27705, Durham, NC, United States"
],
"type": "Organization"
},
"familyName": "Luo",
"givenName": "Bin",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics and Statistics, The University of North Carolina at Greensboro, 116 Petty Building, 27402, Greensboro, NC, United States",
"id": "http://www.grid.ac/institutes/grid.266860.c",
"name": [
"Department of Mathematics and Statistics, The University of North Carolina at Greensboro, 116 Petty Building, 27402, Greensboro, NC, United States"
],
"type": "Organization"
},
"familyName": "Gao",
"givenName": "Xiaoli",
"id": "sg:person.011504317322.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504317322.11"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00054012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004733785",
"https://doi.org/10.1007/bf00054012"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10107-012-0629-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000563802",
"https://doi.org/10.1007/s10107-012-0629-5"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-09-09",
"datePublishedReg": "2021-09-09",
"description": "In high-dimensional data analysis, bi-level sparsity is often assumed when covariates function group-wisely and sparsity can appear either at the group level or within certain groups. In such cases, an ideal model should be able to encourage the bi-level variable selection consistently. Bi-level variable selection has become even more challenging when data have heavy-tailed distribution or outliers exist in random errors and covariates. In this paper, we study a framework of high-dimensional M-estimation for bi-level variable selection. This framework encourages bi-level sparsity through a computationally efficient two-stage procedure. In theory, we provide sufficient conditions under which our two-stage penalized M-estimator possesses simultaneous local estimation consistency and the bi-level variable selection consistency if certain non-convex penalty functions are used at the group level. Both our simulation studies and real data analysis demonstrate satisfactory finite sample performance of the proposed estimators under different irregular settings.",
"genre": "article",
"id": "sg:pub.10.1007/s10463-021-00809-z",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1041657",
"issn": [
"0020-3157",
"1572-9052"
],
"name": "Annals of the Institute of Statistical Mathematics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "74"
}
],
"keywords": [
"bi-level variable selection",
"variable selection",
"high-dimensional data analysis",
"satisfactory finite sample performance",
"non-convex penalty function",
"finite sample performance",
"variable selection consistency",
"real data analysis",
"selection consistency",
"M-estimation",
"M-estimators",
"estimation consistency",
"sufficient conditions",
"sample performance",
"penalty function",
"tailed distribution",
"random errors",
"simulation study",
"sparsity",
"irregular settings",
"data analysis",
"two-stage procedure",
"estimator",
"two-stage",
"framework",
"theory",
"outliers",
"error",
"covariates",
"model",
"distribution",
"selection",
"such cases",
"consistency",
"function",
"ideal model",
"analysis",
"performance",
"cases",
"certain groups",
"conditions",
"procedure",
"data",
"group level",
"setting",
"levels",
"study",
"group",
"paper"
],
"name": "A high-dimensional M-estimator framework for bi-level variable selection",
"pagination": "559-579",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1141002982"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10463-021-00809-z"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10463-021-00809-z",
"https://app.dimensions.ai/details/publication/pub.1141002982"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_880.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10463-021-00809-z"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00809-z'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00809-z'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00809-z'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00809-z'
This table displays all metadata directly associated to this object as RDF triples.
124 TRIPLES
22 PREDICATES
76 URIs
66 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10463-021-00809-z | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0104 |
3 | ″ | schema:author | N8afa6c90bd40432dba4641ac17e95fd9 |
4 | ″ | schema:citation | sg:pub.10.1007/bf00054012 |
5 | ″ | ″ | sg:pub.10.1007/s10107-012-0629-5 |
6 | ″ | schema:datePublished | 2021-09-09 |
7 | ″ | schema:datePublishedReg | 2021-09-09 |
8 | ″ | schema:description | In high-dimensional data analysis, bi-level sparsity is often assumed when covariates function group-wisely and sparsity can appear either at the group level or within certain groups. In such cases, an ideal model should be able to encourage the bi-level variable selection consistently. Bi-level variable selection has become even more challenging when data have heavy-tailed distribution or outliers exist in random errors and covariates. In this paper, we study a framework of high-dimensional M-estimation for bi-level variable selection. This framework encourages bi-level sparsity through a computationally efficient two-stage procedure. In theory, we provide sufficient conditions under which our two-stage penalized M-estimator possesses simultaneous local estimation consistency and the bi-level variable selection consistency if certain non-convex penalty functions are used at the group level. Both our simulation studies and real data analysis demonstrate satisfactory finite sample performance of the proposed estimators under different irregular settings. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | true |
12 | ″ | schema:isPartOf | N4412efe9183b463e8340b8faa12d53a8 |
13 | ″ | ″ | N8fae0360107944948e54537360f808dc |
14 | ″ | ″ | sg:journal.1041657 |
15 | ″ | schema:keywords | M-estimation |
16 | ″ | ″ | M-estimators |
17 | ″ | ″ | analysis |
18 | ″ | ″ | bi-level variable selection |
19 | ″ | ″ | cases |
20 | ″ | ″ | certain groups |
21 | ″ | ″ | conditions |
22 | ″ | ″ | consistency |
23 | ″ | ″ | covariates |
24 | ″ | ″ | data |
25 | ″ | ″ | data analysis |
26 | ″ | ″ | distribution |
27 | ″ | ″ | error |
28 | ″ | ″ | estimation consistency |
29 | ″ | ″ | estimator |
30 | ″ | ″ | finite sample performance |
31 | ″ | ″ | framework |
32 | ″ | ″ | function |
33 | ″ | ″ | group |
34 | ″ | ″ | group level |
35 | ″ | ″ | high-dimensional data analysis |
36 | ″ | ″ | ideal model |
37 | ″ | ″ | irregular settings |
38 | ″ | ″ | levels |
39 | ″ | ″ | model |
40 | ″ | ″ | non-convex penalty function |
41 | ″ | ″ | outliers |
42 | ″ | ″ | paper |
43 | ″ | ″ | penalty function |
44 | ″ | ″ | performance |
45 | ″ | ″ | procedure |
46 | ″ | ″ | random errors |
47 | ″ | ″ | real data analysis |
48 | ″ | ″ | sample performance |
49 | ″ | ″ | satisfactory finite sample performance |
50 | ″ | ″ | selection |
51 | ″ | ″ | selection consistency |
52 | ″ | ″ | setting |
53 | ″ | ″ | simulation study |
54 | ″ | ″ | sparsity |
55 | ″ | ″ | study |
56 | ″ | ″ | such cases |
57 | ″ | ″ | sufficient conditions |
58 | ″ | ″ | tailed distribution |
59 | ″ | ″ | theory |
60 | ″ | ″ | two-stage |
61 | ″ | ″ | two-stage procedure |
62 | ″ | ″ | variable selection |
63 | ″ | ″ | variable selection consistency |
64 | ″ | schema:name | A high-dimensional M-estimator framework for bi-level variable selection |
65 | ″ | schema:pagination | 559-579 |
66 | ″ | schema:productId | N073fe952f58e44c89e74f3a019cc8985 |
67 | ″ | ″ | Nfafbbc573b3c457ba2b8b293e6bf8881 |
68 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1141002982 |
69 | ″ | ″ | https://doi.org/10.1007/s10463-021-00809-z |
70 | ″ | schema:sdDatePublished | 2022-05-20T07:38 |
71 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
72 | ″ | schema:sdPublisher | N35fd480f795c4350836ab6d98545e488 |
73 | ″ | schema:url | https://doi.org/10.1007/s10463-021-00809-z |
74 | ″ | sgo:license | sg:explorer/license/ |
75 | ″ | sgo:sdDataset | articles |
76 | ″ | rdf:type | schema:ScholarlyArticle |
77 | N073fe952f58e44c89e74f3a019cc8985 | schema:name | doi |
78 | ″ | schema:value | 10.1007/s10463-021-00809-z |
79 | ″ | rdf:type | schema:PropertyValue |
80 | N1f6d7b4f753348948c45e94037c3d52f | rdf:first | sg:person.011504317322.11 |
81 | ″ | rdf:rest | rdf:nil |
82 | N35fd480f795c4350836ab6d98545e488 | schema:name | Springer Nature - SN SciGraph project |
83 | ″ | rdf:type | schema:Organization |
84 | N4412efe9183b463e8340b8faa12d53a8 | schema:issueNumber | 3 |
85 | ″ | rdf:type | schema:PublicationIssue |
86 | N8afa6c90bd40432dba4641ac17e95fd9 | rdf:first | Ne634bebe54fa463c8151161115ee8c09 |
87 | ″ | rdf:rest | N1f6d7b4f753348948c45e94037c3d52f |
88 | N8fae0360107944948e54537360f808dc | schema:volumeNumber | 74 |
89 | ″ | rdf:type | schema:PublicationVolume |
90 | Ne634bebe54fa463c8151161115ee8c09 | schema:affiliation | grid-institutes:grid.26009.3d |
91 | ″ | schema:familyName | Luo |
92 | ″ | schema:givenName | Bin |
93 | ″ | rdf:type | schema:Person |
94 | Nfafbbc573b3c457ba2b8b293e6bf8881 | schema:name | dimensions_id |
95 | ″ | schema:value | pub.1141002982 |
96 | ″ | rdf:type | schema:PropertyValue |
97 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
98 | ″ | schema:name | Mathematical Sciences |
99 | ″ | rdf:type | schema:DefinedTerm |
100 | anzsrc-for:0104 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Statistics |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | sg:journal.1041657 | schema:issn | 0020-3157 |
104 | ″ | ″ | 1572-9052 |
105 | ″ | schema:name | Annals of the Institute of Statistical Mathematics |
106 | ″ | schema:publisher | Springer Nature |
107 | ″ | rdf:type | schema:Periodical |
108 | sg:person.011504317322.11 | schema:affiliation | grid-institutes:grid.266860.c |
109 | ″ | schema:familyName | Gao |
110 | ″ | schema:givenName | Xiaoli |
111 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504317322.11 |
112 | ″ | rdf:type | schema:Person |
113 | sg:pub.10.1007/bf00054012 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1004733785 |
114 | ″ | ″ | https://doi.org/10.1007/bf00054012 |
115 | ″ | rdf:type | schema:CreativeWork |
116 | sg:pub.10.1007/s10107-012-0629-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000563802 |
117 | ″ | ″ | https://doi.org/10.1007/s10107-012-0629-5 |
118 | ″ | rdf:type | schema:CreativeWork |
119 | grid-institutes:grid.26009.3d | schema:alternateName | Department of Biostatistics and Bioinformatics, Duke University, 2424 Erwin Road, 27705, Durham, NC, United States |
120 | ″ | schema:name | Department of Biostatistics and Bioinformatics, Duke University, 2424 Erwin Road, 27705, Durham, NC, United States |
121 | ″ | rdf:type | schema:Organization |
122 | grid-institutes:grid.266860.c | schema:alternateName | Department of Mathematics and Statistics, The University of North Carolina at Greensboro, 116 Petty Building, 27402, Greensboro, NC, United States |
123 | ″ | schema:name | Department of Mathematics and Statistics, The University of North Carolina at Greensboro, 116 Petty Building, 27402, Greensboro, NC, United States |
124 | ″ | rdf:type | schema:Organization |