Characterizing the optimal solutions to the isotonic regression problem for identifiable functionals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-09-03

AUTHORS

Alexander I. Jordan, Anja Mühlemann, Johanna F. Ziegel

ABSTRACT

In general, the solution to a regression problem is the minimizer of a given loss criterion and depends on the specified loss function. The nonparametric isotonic regression problem is special, in that optimal solutions can be found by solely specifying a functional. These solutions will then be minimizers under all loss functions simultaneously as long as the loss functions have the requested functional as the Bayes act. For the functional, the only requirement is that it can be defined via an identification function, with examples including the expectation, quantile, and expectile functionals. Generalizing classical results, we characterize the optimal solutions to the isotonic regression problem for identifiable functionals by rigorously treating these functionals as set-valued. The results hold in the case of totally or partially ordered explanatory variables. For total orders, we show that any solution resulting from the pool-adjacent-violators algorithm is optimal. More... »

PAGES

489-514

References to SciGraph publications

  • 2011. Pathfinding through Congruences in RELATIONAL AND ALGEBRAIC METHODS IN COMPUTER SCIENCE
  • 1999-03. Algorithms for a Class of Isotonic Regression Problems in ALGORITHMICA
  • 2013-08-01. Isotonic Regression for Multiple Independent Variables in ALGORITHMICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10463-021-00808-0

    DOI

    http://dx.doi.org/10.1007/s10463-021-00808-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1140869279


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Computational Statistics (CST) Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.424699.4", 
              "name": [
                "Computational Statistics (CST) Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jordan", 
            "givenName": "Alexander I.", 
            "id": "sg:person.013020404145.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020404145.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mathematical Statistics and Actuarial Science, University of Bern, Alpeneggstrasse 22, 3012, Bern, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5734.5", 
              "name": [
                "Institute of Mathematical Statistics and Actuarial Science, University of Bern, Alpeneggstrasse 22, 3012, Bern, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "M\u00fchlemann", 
            "givenName": "Anja", 
            "id": "sg:person.015051264005.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015051264005.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mathematical Statistics and Actuarial Science, University of Bern, Alpeneggstrasse 22, 3012, Bern, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5734.5", 
              "name": [
                "Institute of Mathematical Statistics and Actuarial Science, University of Bern, Alpeneggstrasse 22, 3012, Bern, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ziegel", 
            "givenName": "Johanna F.", 
            "id": "sg:person.07642265347.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07642265347.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-21070-9_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050236718", 
              "https://doi.org/10.1007/978-3-642-21070-9_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00009258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013999209", 
              "https://doi.org/10.1007/pl00009258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00453-013-9814-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035439777", 
              "https://doi.org/10.1007/s00453-013-9814-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-03", 
        "datePublishedReg": "2021-09-03", 
        "description": "In general, the solution to a regression problem is the minimizer of a given loss criterion and depends on the specified loss function. The nonparametric isotonic regression problem is special, in that optimal solutions can be found by solely specifying a functional. These solutions will then be minimizers under all loss functions simultaneously as long as the loss functions have the requested functional as the Bayes act. For the functional, the only requirement is that it can be defined via an identification function, with examples including the expectation, quantile, and expectile functionals. Generalizing classical results, we characterize the optimal solutions to the isotonic regression problem for identifiable functionals by rigorously treating these functionals as set-valued. The results hold in the case of totally or partially ordered explanatory variables. For total orders, we show that any solution resulting from the pool-adjacent-violators algorithm is optimal.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10463-021-00808-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041657", 
            "issn": [
              "0020-3157", 
              "1572-9052"
            ], 
            "name": "Annals of the Institute of Statistical Mathematics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "74"
          }
        ], 
        "keywords": [
          "regression problems", 
          "isotonic regression problem", 
          "loss function", 
          "optimal solution", 
          "total order", 
          "violators algorithm", 
          "only requirement", 
          "identification function", 
          "algorithm", 
          "loss criterion", 
          "solution", 
          "requirements", 
          "example", 
          "order", 
          "results", 
          "minimizers", 
          "function", 
          "expectations", 
          "criteria", 
          "explanatory variables", 
          "variables", 
          "cases", 
          "functionals", 
          "classical results", 
          "acts", 
          "problem"
        ], 
        "name": "Characterizing the optimal solutions to the isotonic regression problem for identifiable functionals", 
        "pagination": "489-514", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1140869279"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10463-021-00808-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10463-021-00808-0", 
          "https://app.dimensions.ai/details/publication/pub.1140869279"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_903.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10463-021-00808-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00808-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00808-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00808-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00808-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    113 TRIPLES      22 PREDICATES      54 URIs      43 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10463-021-00808-0 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author Nf056e5d3d7184aae9c130ca72513013c
    4 schema:citation sg:pub.10.1007/978-3-642-21070-9_15
    5 sg:pub.10.1007/pl00009258
    6 sg:pub.10.1007/s00453-013-9814-z
    7 schema:datePublished 2021-09-03
    8 schema:datePublishedReg 2021-09-03
    9 schema:description In general, the solution to a regression problem is the minimizer of a given loss criterion and depends on the specified loss function. The nonparametric isotonic regression problem is special, in that optimal solutions can be found by solely specifying a functional. These solutions will then be minimizers under all loss functions simultaneously as long as the loss functions have the requested functional as the Bayes act. For the functional, the only requirement is that it can be defined via an identification function, with examples including the expectation, quantile, and expectile functionals. Generalizing classical results, we characterize the optimal solutions to the isotonic regression problem for identifiable functionals by rigorously treating these functionals as set-valued. The results hold in the case of totally or partially ordered explanatory variables. For total orders, we show that any solution resulting from the pool-adjacent-violators algorithm is optimal.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N4d0bd3531ab7443193522a67d3a095e0
    14 Nf0cf00b8747845f7bc6f9de9c38dc0f4
    15 sg:journal.1041657
    16 schema:keywords acts
    17 algorithm
    18 cases
    19 classical results
    20 criteria
    21 example
    22 expectations
    23 explanatory variables
    24 function
    25 functionals
    26 identification function
    27 isotonic regression problem
    28 loss criterion
    29 loss function
    30 minimizers
    31 only requirement
    32 optimal solution
    33 order
    34 problem
    35 regression problems
    36 requirements
    37 results
    38 solution
    39 total order
    40 variables
    41 violators algorithm
    42 schema:name Characterizing the optimal solutions to the isotonic regression problem for identifiable functionals
    43 schema:pagination 489-514
    44 schema:productId N6403580f6e4c4eeab04ed26560cf9cd2
    45 N7481544e093a456da7ddeab789a89f5e
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140869279
    47 https://doi.org/10.1007/s10463-021-00808-0
    48 schema:sdDatePublished 2022-05-20T07:39
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher Nc0a75acd0bd045ce90ea77e83865b5f8
    51 schema:url https://doi.org/10.1007/s10463-021-00808-0
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N4d0bd3531ab7443193522a67d3a095e0 schema:volumeNumber 74
    56 rdf:type schema:PublicationVolume
    57 N6403580f6e4c4eeab04ed26560cf9cd2 schema:name dimensions_id
    58 schema:value pub.1140869279
    59 rdf:type schema:PropertyValue
    60 N7481544e093a456da7ddeab789a89f5e schema:name doi
    61 schema:value 10.1007/s10463-021-00808-0
    62 rdf:type schema:PropertyValue
    63 Nc0a75acd0bd045ce90ea77e83865b5f8 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Ncd0ec04e160a46b1a3ac575894074397 rdf:first sg:person.07642265347.38
    66 rdf:rest rdf:nil
    67 Nd384f544b2b44deca88b1b955dd5777b rdf:first sg:person.015051264005.58
    68 rdf:rest Ncd0ec04e160a46b1a3ac575894074397
    69 Nf056e5d3d7184aae9c130ca72513013c rdf:first sg:person.013020404145.43
    70 rdf:rest Nd384f544b2b44deca88b1b955dd5777b
    71 Nf0cf00b8747845f7bc6f9de9c38dc0f4 schema:issueNumber 3
    72 rdf:type schema:PublicationIssue
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Numerical and Computational Mathematics
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1041657 schema:issn 0020-3157
    80 1572-9052
    81 schema:name Annals of the Institute of Statistical Mathematics
    82 schema:publisher Springer Nature
    83 rdf:type schema:Periodical
    84 sg:person.013020404145.43 schema:affiliation grid-institutes:grid.424699.4
    85 schema:familyName Jordan
    86 schema:givenName Alexander I.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020404145.43
    88 rdf:type schema:Person
    89 sg:person.015051264005.58 schema:affiliation grid-institutes:grid.5734.5
    90 schema:familyName Mühlemann
    91 schema:givenName Anja
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015051264005.58
    93 rdf:type schema:Person
    94 sg:person.07642265347.38 schema:affiliation grid-institutes:grid.5734.5
    95 schema:familyName Ziegel
    96 schema:givenName Johanna F.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07642265347.38
    98 rdf:type schema:Person
    99 sg:pub.10.1007/978-3-642-21070-9_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050236718
    100 https://doi.org/10.1007/978-3-642-21070-9_15
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/pl00009258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013999209
    103 https://doi.org/10.1007/pl00009258
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s00453-013-9814-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035439777
    106 https://doi.org/10.1007/s00453-013-9814-z
    107 rdf:type schema:CreativeWork
    108 grid-institutes:grid.424699.4 schema:alternateName Computational Statistics (CST) Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
    109 schema:name Computational Statistics (CST) Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
    110 rdf:type schema:Organization
    111 grid-institutes:grid.5734.5 schema:alternateName Institute of Mathematical Statistics and Actuarial Science, University of Bern, Alpeneggstrasse 22, 3012, Bern, Switzerland
    112 schema:name Institute of Mathematical Statistics and Actuarial Science, University of Bern, Alpeneggstrasse 22, 3012, Bern, Switzerland
    113 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...