The variable selection by the Dantzig selector for Cox’s proportional hazards model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-08-31

AUTHORS

Kou Fujimori

ABSTRACT

The proportional hazards model proposed by D. R. Cox in a high-dimensional and sparse setting is discussed. The regression parameter is estimated by the Dantzig selector, which will be proved to have the variable selection consistency. This fact enables us to reduce the dimension of the parameter and to construct asymptotically normal estimators for the regression parameter and the cumulative baseline hazard function. More... »

PAGES

1-23

References to SciGraph publications

  • 1996. Weak Convergence and Empirical Processes, With Applications to Statistics in NONE
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2016-01-21. Asymtotics of Dantzig selector for a general single-index model in JOURNAL OF SYSTEMS SCIENCE AND COMPLEXITY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10463-021-00807-1

    DOI

    http://dx.doi.org/10.1007/s10463-021-00807-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1140776800


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Economics, Faculty of Economics and Law, Shinshu University, 3-1-1, Asahi, 390-8621, Matsumoto City, Nagano, Japan", 
              "id": "http://www.grid.ac/institutes/grid.263518.b", 
              "name": [
                "Department of Economics, Faculty of Economics and Law, Shinshu University, 3-1-1, Asahi, 390-8621, Matsumoto City, Nagano, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fujimori", 
            "givenName": "Kou", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11424-015-4124-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008787330", 
              "https://doi.org/10.1007/s11424-015-4124-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2545-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011708206", 
              "https://doi.org/10.1007/978-1-4757-2545-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11203-018-9191-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107405817", 
              "https://doi.org/10.1007/s11203-018-9191-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-08-31", 
        "datePublishedReg": "2021-08-31", 
        "description": "The proportional hazards model proposed by D. R. Cox in a high-dimensional and sparse setting is discussed. The regression parameter is estimated by the Dantzig selector, which will be proved to have the variable selection consistency. This fact enables us to reduce the dimension of the parameter and to construct asymptotically normal estimators for the regression parameter and the cumulative baseline hazard function.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10463-021-00807-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1041657", 
            "issn": [
              "0020-3157", 
              "1572-9052"
            ], 
            "name": "Annals of the Institute of Statistical Mathematics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "proportional hazards model", 
          "hazards model", 
          "Cox proportional hazards model", 
          "Cox", 
          "setting", 
          "hazard function", 
          "function", 
          "cumulative baseline hazard function", 
          "baseline hazard function", 
          "model", 
          "parameters", 
          "consistency", 
          "selection", 
          "fact", 
          "regression parameters", 
          "Dantzig selector", 
          "variable selection consistency", 
          "variable selection", 
          "selection consistency", 
          "normal estimators", 
          "sparse setting", 
          "dimensions", 
          "estimator", 
          "selector"
        ], 
        "name": "The variable selection by the Dantzig selector for Cox\u2019s proportional hazards model", 
        "pagination": "1-23", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1140776800"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10463-021-00807-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10463-021-00807-1", 
          "https://app.dimensions.ai/details/publication/pub.1140776800"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_885.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10463-021-00807-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00807-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00807-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00807-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00807-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    87 TRIPLES      22 PREDICATES      50 URIs      39 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10463-021-00807-1 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N3686a607d9ea438283833fda7808310a
    4 schema:citation sg:pub.10.1007/978-1-4757-2545-2
    5 sg:pub.10.1007/s11203-018-9191-y
    6 sg:pub.10.1007/s11424-015-4124-y
    7 schema:datePublished 2021-08-31
    8 schema:datePublishedReg 2021-08-31
    9 schema:description The proportional hazards model proposed by D. R. Cox in a high-dimensional and sparse setting is discussed. The regression parameter is estimated by the Dantzig selector, which will be proved to have the variable selection consistency. This fact enables us to reduce the dimension of the parameter and to construct asymptotically normal estimators for the regression parameter and the cumulative baseline hazard function.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf sg:journal.1041657
    14 schema:keywords Cox
    15 Cox proportional hazards model
    16 Dantzig selector
    17 baseline hazard function
    18 consistency
    19 cumulative baseline hazard function
    20 dimensions
    21 estimator
    22 fact
    23 function
    24 hazard function
    25 hazards model
    26 model
    27 normal estimators
    28 parameters
    29 proportional hazards model
    30 regression parameters
    31 selection
    32 selection consistency
    33 selector
    34 setting
    35 sparse setting
    36 variable selection
    37 variable selection consistency
    38 schema:name The variable selection by the Dantzig selector for Cox’s proportional hazards model
    39 schema:pagination 1-23
    40 schema:productId N2eca2f4b2d254bedb8f63e3e95636720
    41 Nc258e18e619242f6b559eb1a7dfc6596
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140776800
    43 https://doi.org/10.1007/s10463-021-00807-1
    44 schema:sdDatePublished 2022-01-01T19:02
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher N8ba914f6298c41798a42b0b07eb14982
    47 schema:url https://doi.org/10.1007/s10463-021-00807-1
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N2eca2f4b2d254bedb8f63e3e95636720 schema:name dimensions_id
    52 schema:value pub.1140776800
    53 rdf:type schema:PropertyValue
    54 N3686a607d9ea438283833fda7808310a rdf:first Nc83aafd1305d4d10a77f54d5d7e6e99d
    55 rdf:rest rdf:nil
    56 N8ba914f6298c41798a42b0b07eb14982 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 Nc258e18e619242f6b559eb1a7dfc6596 schema:name doi
    59 schema:value 10.1007/s10463-021-00807-1
    60 rdf:type schema:PropertyValue
    61 Nc83aafd1305d4d10a77f54d5d7e6e99d schema:affiliation grid-institutes:grid.263518.b
    62 schema:familyName Fujimori
    63 schema:givenName Kou
    64 rdf:type schema:Person
    65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Mathematical Sciences
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Statistics
    70 rdf:type schema:DefinedTerm
    71 sg:journal.1041657 schema:issn 0020-3157
    72 1572-9052
    73 schema:name Annals of the Institute of Statistical Mathematics
    74 schema:publisher Springer Nature
    75 rdf:type schema:Periodical
    76 sg:pub.10.1007/978-1-4757-2545-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011708206
    77 https://doi.org/10.1007/978-1-4757-2545-2
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/s11203-018-9191-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1107405817
    80 https://doi.org/10.1007/s11203-018-9191-y
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/s11424-015-4124-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008787330
    83 https://doi.org/10.1007/s11424-015-4124-y
    84 rdf:type schema:CreativeWork
    85 grid-institutes:grid.263518.b schema:alternateName Department of Economics, Faculty of Economics and Law, Shinshu University, 3-1-1, Asahi, 390-8621, Matsumoto City, Nagano, Japan
    86 schema:name Department of Economics, Faculty of Economics and Law, Shinshu University, 3-1-1, Asahi, 390-8621, Matsumoto City, Nagano, Japan
    87 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...