The finite sample properties of sparse M-estimators with pseudo-observations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-04-08

AUTHORS

Benjamin Poignard, Jean-David Fermanian

ABSTRACT

We provide finite sample properties of general regularized statistical criteria in the presence of pseudo-observations. Under the restricted strong convexity assumption of the unpenalized loss function and regularity conditions on the penalty, we derive non-asymptotic error bounds on the regularized M-estimator. This penalized framework with pseudo-observations is then applied to the M-estimation of some usual copula-based models. These theoretical results are supported by an empirical study. More... »

PAGES

1-31

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10463-021-00785-4

DOI

http://dx.doi.org/10.1007/s10463-021-00785-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1136991727


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CREST-LFA, 5 avenue le Chatelier, 91120, Palaiseau, France", 
          "id": "http://www.grid.ac/institutes/grid.503146.5", 
          "name": [
            "Graduate School of Economics, Osaka University, 1-7, Machikaneyama, 560-0043, Toyonaka-Shi, Osaka-Fu, Japan", 
            "Jointly Affiliated at High-Dimensional Statistical Modeling Team, RIKEN Center for Advanced Intelligence Project (AIP), 2-1 Hirosawa, 351-0198, Wako-Shi, Saitama-Ken, Japan", 
            "CREST-LFA, 5 avenue le Chatelier, 91120, Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poignard", 
        "givenName": "Benjamin", 
        "id": "sg:person.012077661352.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077661352.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ensae-Crest, 5 avenue Henry le Chatelier, 91129, Palaiseau, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Ensae-Crest, 5 avenue Henry le Chatelier, 91129, Palaiseau, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fermanian", 
        "givenName": "Jean-David", 
        "id": "sg:person.016546600751.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016546600751.19"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-04-08", 
    "datePublishedReg": "2021-04-08", 
    "description": "We provide finite sample properties of general regularized statistical criteria in the presence of pseudo-observations. Under the restricted strong convexity assumption of the unpenalized loss function and regularity conditions on the penalty, we derive non-asymptotic error bounds on the regularized M-estimator. This penalized framework with pseudo-observations is then applied to the M-estimation of some usual copula-based models. These theoretical results are supported by an empirical study.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10463-021-00785-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9044647", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041657", 
        "issn": [
          "0020-3157", 
          "1572-9052"
        ], 
        "name": "Annals of the Institute of Statistical Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "74"
      }
    ], 
    "keywords": [
      "finite sample properties", 
      "M-estimators", 
      "non-asymptotic error bounds", 
      "sample properties", 
      "strong convexity assumption", 
      "M-estimation", 
      "regularity conditions", 
      "error bounds", 
      "convexity assumptions", 
      "copula-based model", 
      "theoretical results", 
      "statistical criteria", 
      "loss function", 
      "bounds", 
      "properties", 
      "assumption", 
      "model", 
      "framework", 
      "function", 
      "penalty", 
      "criteria", 
      "conditions", 
      "results", 
      "empirical study", 
      "presence", 
      "study"
    ], 
    "name": "The finite sample properties of sparse M-estimators with pseudo-observations", 
    "pagination": "1-31", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1136991727"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10463-021-00785-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10463-021-00785-4", 
      "https://app.dimensions.ai/details/publication/pub.1136991727"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_894.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10463-021-00785-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00785-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00785-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00785-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00785-4'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      51 URIs      43 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10463-021-00785-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ndf16cbdf6bff4fac9a2a9355e6ca4b8c
4 schema:datePublished 2021-04-08
5 schema:datePublishedReg 2021-04-08
6 schema:description We provide finite sample properties of general regularized statistical criteria in the presence of pseudo-observations. Under the restricted strong convexity assumption of the unpenalized loss function and regularity conditions on the penalty, we derive non-asymptotic error bounds on the regularized M-estimator. This penalized framework with pseudo-observations is then applied to the M-estimation of some usual copula-based models. These theoretical results are supported by an empirical study.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N024e79f088cb410aab8ab3cb54015570
11 Nd5637a9f7eeb4c6399a2d038f6514360
12 sg:journal.1041657
13 schema:keywords M-estimation
14 M-estimators
15 assumption
16 bounds
17 conditions
18 convexity assumptions
19 copula-based model
20 criteria
21 empirical study
22 error bounds
23 finite sample properties
24 framework
25 function
26 loss function
27 model
28 non-asymptotic error bounds
29 penalty
30 presence
31 properties
32 regularity conditions
33 results
34 sample properties
35 statistical criteria
36 strong convexity assumption
37 study
38 theoretical results
39 schema:name The finite sample properties of sparse M-estimators with pseudo-observations
40 schema:pagination 1-31
41 schema:productId N2b60450518df493eac5218dd7363c6d3
42 Ncea01f8a3e9c48dd99067ab2a197f23e
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136991727
44 https://doi.org/10.1007/s10463-021-00785-4
45 schema:sdDatePublished 2022-05-20T07:39
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N08ce9dbe6f304a12bd343573c25a6580
48 schema:url https://doi.org/10.1007/s10463-021-00785-4
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N024e79f088cb410aab8ab3cb54015570 schema:issueNumber 1
53 rdf:type schema:PublicationIssue
54 N08ce9dbe6f304a12bd343573c25a6580 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N2b60450518df493eac5218dd7363c6d3 schema:name dimensions_id
57 schema:value pub.1136991727
58 rdf:type schema:PropertyValue
59 Nbfff751521ea44798d4a4cbd8af118c2 rdf:first sg:person.016546600751.19
60 rdf:rest rdf:nil
61 Ncea01f8a3e9c48dd99067ab2a197f23e schema:name doi
62 schema:value 10.1007/s10463-021-00785-4
63 rdf:type schema:PropertyValue
64 Nd5637a9f7eeb4c6399a2d038f6514360 schema:volumeNumber 74
65 rdf:type schema:PublicationVolume
66 Ndf16cbdf6bff4fac9a2a9355e6ca4b8c rdf:first sg:person.012077661352.30
67 rdf:rest Nbfff751521ea44798d4a4cbd8af118c2
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
72 schema:name Statistics
73 rdf:type schema:DefinedTerm
74 sg:grant.9044647 http://pending.schema.org/fundedItem sg:pub.10.1007/s10463-021-00785-4
75 rdf:type schema:MonetaryGrant
76 sg:journal.1041657 schema:issn 0020-3157
77 1572-9052
78 schema:name Annals of the Institute of Statistical Mathematics
79 schema:publisher Springer Nature
80 rdf:type schema:Periodical
81 sg:person.012077661352.30 schema:affiliation grid-institutes:grid.503146.5
82 schema:familyName Poignard
83 schema:givenName Benjamin
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077661352.30
85 rdf:type schema:Person
86 sg:person.016546600751.19 schema:affiliation grid-institutes:None
87 schema:familyName Fermanian
88 schema:givenName Jean-David
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016546600751.19
90 rdf:type schema:Person
91 grid-institutes:None schema:alternateName Ensae-Crest, 5 avenue Henry le Chatelier, 91129, Palaiseau, France
92 schema:name Ensae-Crest, 5 avenue Henry le Chatelier, 91129, Palaiseau, France
93 rdf:type schema:Organization
94 grid-institutes:grid.503146.5 schema:alternateName CREST-LFA, 5 avenue le Chatelier, 91120, Palaiseau, France
95 schema:name CREST-LFA, 5 avenue le Chatelier, 91120, Palaiseau, France
96 Graduate School of Economics, Osaka University, 1-7, Machikaneyama, 560-0043, Toyonaka-Shi, Osaka-Fu, Japan
97 Jointly Affiliated at High-Dimensional Statistical Modeling Team, RIKEN Center for Advanced Intelligence Project (AIP), 2-1 Hirosawa, 351-0198, Wako-Shi, Saitama-Ken, Japan
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...