Ontology type: schema:ScholarlyArticle
2021-04-08
AUTHORSBenjamin Poignard, Jean-David Fermanian
ABSTRACTWe provide finite sample properties of general regularized statistical criteria in the presence of pseudo-observations. Under the restricted strong convexity assumption of the unpenalized loss function and regularity conditions on the penalty, we derive non-asymptotic error bounds on the regularized M-estimator. This penalized framework with pseudo-observations is then applied to the M-estimation of some usual copula-based models. These theoretical results are supported by an empirical study. More... »
PAGES1-31
http://scigraph.springernature.com/pub.10.1007/s10463-021-00785-4
DOIhttp://dx.doi.org/10.1007/s10463-021-00785-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1136991727
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "CREST-LFA, 5 avenue le Chatelier, 91120, Palaiseau, France",
"id": "http://www.grid.ac/institutes/grid.503146.5",
"name": [
"Graduate School of Economics, Osaka University, 1-7, Machikaneyama, 560-0043, Toyonaka-Shi, Osaka-Fu, Japan",
"Jointly Affiliated at High-Dimensional Statistical Modeling Team, RIKEN Center for Advanced Intelligence Project (AIP), 2-1 Hirosawa, 351-0198, Wako-Shi, Saitama-Ken, Japan",
"CREST-LFA, 5 avenue le Chatelier, 91120, Palaiseau, France"
],
"type": "Organization"
},
"familyName": "Poignard",
"givenName": "Benjamin",
"id": "sg:person.012077661352.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077661352.30"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ensae-Crest, 5 avenue Henry le Chatelier, 91129, Palaiseau, France",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Ensae-Crest, 5 avenue Henry le Chatelier, 91129, Palaiseau, France"
],
"type": "Organization"
},
"familyName": "Fermanian",
"givenName": "Jean-David",
"id": "sg:person.016546600751.19",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016546600751.19"
],
"type": "Person"
}
],
"datePublished": "2021-04-08",
"datePublishedReg": "2021-04-08",
"description": "We provide finite sample properties of general regularized statistical criteria in the presence of pseudo-observations. Under the restricted strong convexity assumption of the unpenalized loss function and regularity conditions on the penalty, we derive non-asymptotic error bounds on the regularized M-estimator. This penalized framework with pseudo-observations is then applied to the M-estimation of some usual copula-based models. These theoretical results are supported by an empirical study.",
"genre": "article",
"id": "sg:pub.10.1007/s10463-021-00785-4",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.9044647",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1041657",
"issn": [
"0020-3157",
"1572-9052"
],
"name": "Annals of the Institute of Statistical Mathematics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "74"
}
],
"keywords": [
"finite sample properties",
"M-estimators",
"non-asymptotic error bounds",
"sample properties",
"strong convexity assumption",
"M-estimation",
"regularity conditions",
"error bounds",
"convexity assumptions",
"copula-based model",
"theoretical results",
"statistical criteria",
"loss function",
"bounds",
"properties",
"assumption",
"model",
"framework",
"function",
"penalty",
"criteria",
"conditions",
"results",
"empirical study",
"presence",
"study"
],
"name": "The finite sample properties of sparse M-estimators with pseudo-observations",
"pagination": "1-31",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1136991727"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10463-021-00785-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10463-021-00785-4",
"https://app.dimensions.ai/details/publication/pub.1136991727"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_894.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10463-021-00785-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00785-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00785-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00785-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00785-4'
This table displays all metadata directly associated to this object as RDF triples.
98 TRIPLES
21 PREDICATES
51 URIs
43 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s10463-021-00785-4 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0104 |
3 | ″ | schema:author | Ndf16cbdf6bff4fac9a2a9355e6ca4b8c |
4 | ″ | schema:datePublished | 2021-04-08 |
5 | ″ | schema:datePublishedReg | 2021-04-08 |
6 | ″ | schema:description | We provide finite sample properties of general regularized statistical criteria in the presence of pseudo-observations. Under the restricted strong convexity assumption of the unpenalized loss function and regularity conditions on the penalty, we derive non-asymptotic error bounds on the regularized M-estimator. This penalized framework with pseudo-observations is then applied to the M-estimation of some usual copula-based models. These theoretical results are supported by an empirical study. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N024e79f088cb410aab8ab3cb54015570 |
11 | ″ | ″ | Nd5637a9f7eeb4c6399a2d038f6514360 |
12 | ″ | ″ | sg:journal.1041657 |
13 | ″ | schema:keywords | M-estimation |
14 | ″ | ″ | M-estimators |
15 | ″ | ″ | assumption |
16 | ″ | ″ | bounds |
17 | ″ | ″ | conditions |
18 | ″ | ″ | convexity assumptions |
19 | ″ | ″ | copula-based model |
20 | ″ | ″ | criteria |
21 | ″ | ″ | empirical study |
22 | ″ | ″ | error bounds |
23 | ″ | ″ | finite sample properties |
24 | ″ | ″ | framework |
25 | ″ | ″ | function |
26 | ″ | ″ | loss function |
27 | ″ | ″ | model |
28 | ″ | ″ | non-asymptotic error bounds |
29 | ″ | ″ | penalty |
30 | ″ | ″ | presence |
31 | ″ | ″ | properties |
32 | ″ | ″ | regularity conditions |
33 | ″ | ″ | results |
34 | ″ | ″ | sample properties |
35 | ″ | ″ | statistical criteria |
36 | ″ | ″ | strong convexity assumption |
37 | ″ | ″ | study |
38 | ″ | ″ | theoretical results |
39 | ″ | schema:name | The finite sample properties of sparse M-estimators with pseudo-observations |
40 | ″ | schema:pagination | 1-31 |
41 | ″ | schema:productId | N2b60450518df493eac5218dd7363c6d3 |
42 | ″ | ″ | Ncea01f8a3e9c48dd99067ab2a197f23e |
43 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1136991727 |
44 | ″ | ″ | https://doi.org/10.1007/s10463-021-00785-4 |
45 | ″ | schema:sdDatePublished | 2022-05-20T07:39 |
46 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
47 | ″ | schema:sdPublisher | N08ce9dbe6f304a12bd343573c25a6580 |
48 | ″ | schema:url | https://doi.org/10.1007/s10463-021-00785-4 |
49 | ″ | sgo:license | sg:explorer/license/ |
50 | ″ | sgo:sdDataset | articles |
51 | ″ | rdf:type | schema:ScholarlyArticle |
52 | N024e79f088cb410aab8ab3cb54015570 | schema:issueNumber | 1 |
53 | ″ | rdf:type | schema:PublicationIssue |
54 | N08ce9dbe6f304a12bd343573c25a6580 | schema:name | Springer Nature - SN SciGraph project |
55 | ″ | rdf:type | schema:Organization |
56 | N2b60450518df493eac5218dd7363c6d3 | schema:name | dimensions_id |
57 | ″ | schema:value | pub.1136991727 |
58 | ″ | rdf:type | schema:PropertyValue |
59 | Nbfff751521ea44798d4a4cbd8af118c2 | rdf:first | sg:person.016546600751.19 |
60 | ″ | rdf:rest | rdf:nil |
61 | Ncea01f8a3e9c48dd99067ab2a197f23e | schema:name | doi |
62 | ″ | schema:value | 10.1007/s10463-021-00785-4 |
63 | ″ | rdf:type | schema:PropertyValue |
64 | Nd5637a9f7eeb4c6399a2d038f6514360 | schema:volumeNumber | 74 |
65 | ″ | rdf:type | schema:PublicationVolume |
66 | Ndf16cbdf6bff4fac9a2a9355e6ca4b8c | rdf:first | sg:person.012077661352.30 |
67 | ″ | rdf:rest | Nbfff751521ea44798d4a4cbd8af118c2 |
68 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
69 | ″ | schema:name | Mathematical Sciences |
70 | ″ | rdf:type | schema:DefinedTerm |
71 | anzsrc-for:0104 | schema:inDefinedTermSet | anzsrc-for: |
72 | ″ | schema:name | Statistics |
73 | ″ | rdf:type | schema:DefinedTerm |
74 | sg:grant.9044647 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s10463-021-00785-4 |
75 | ″ | rdf:type | schema:MonetaryGrant |
76 | sg:journal.1041657 | schema:issn | 0020-3157 |
77 | ″ | ″ | 1572-9052 |
78 | ″ | schema:name | Annals of the Institute of Statistical Mathematics |
79 | ″ | schema:publisher | Springer Nature |
80 | ″ | rdf:type | schema:Periodical |
81 | sg:person.012077661352.30 | schema:affiliation | grid-institutes:grid.503146.5 |
82 | ″ | schema:familyName | Poignard |
83 | ″ | schema:givenName | Benjamin |
84 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012077661352.30 |
85 | ″ | rdf:type | schema:Person |
86 | sg:person.016546600751.19 | schema:affiliation | grid-institutes:None |
87 | ″ | schema:familyName | Fermanian |
88 | ″ | schema:givenName | Jean-David |
89 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016546600751.19 |
90 | ″ | rdf:type | schema:Person |
91 | grid-institutes:None | schema:alternateName | Ensae-Crest, 5 avenue Henry le Chatelier, 91129, Palaiseau, France |
92 | ″ | schema:name | Ensae-Crest, 5 avenue Henry le Chatelier, 91129, Palaiseau, France |
93 | ″ | rdf:type | schema:Organization |
94 | grid-institutes:grid.503146.5 | schema:alternateName | CREST-LFA, 5 avenue le Chatelier, 91120, Palaiseau, France |
95 | ″ | schema:name | CREST-LFA, 5 avenue le Chatelier, 91120, Palaiseau, France |
96 | ″ | ″ | Graduate School of Economics, Osaka University, 1-7, Machikaneyama, 560-0043, Toyonaka-Shi, Osaka-Fu, Japan |
97 | ″ | ″ | Jointly Affiliated at High-Dimensional Statistical Modeling Team, RIKEN Center for Advanced Intelligence Project (AIP), 2-1 Hirosawa, 351-0198, Wako-Shi, Saitama-Ken, Japan |
98 | ″ | rdf:type | schema:Organization |