Simultaneous confidence bands for nonparametric regression with missing covariate data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-06-08

AUTHORS

Li Cai, Lijie Gu, Qihua Wang, Suojin Wang

ABSTRACT

We consider a weighted local linear estimator based on the inverse selection probability for nonparametric regression with missing covariates at random. The asymptotic distribution of the maximal deviation between the estimator and the true regression function is derived and an asymptotically accurate simultaneous confidence band is constructed. The estimator for the regression function is shown to be oracally efficient in the sense that it is uniformly indistinguishable from that when the selection probabilities are known. Finite sample performance is examined via simulation studies which support our asymptotic theory. The proposed method is demonstrated via an analysis of a data set from the Canada 2010/2011 Youth Student Survey. More... »

PAGES

1249-1279

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10463-021-00784-5

DOI

http://dx.doi.org/10.1007/s10463-021-00784-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1138691989


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Statistics and Mathematics, Zhejiang Gongshang University, 310018, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.413072.3", 
          "name": [
            "School of Statistics and Mathematics, Zhejiang Gongshang University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Li", 
        "id": "sg:person.011232534465.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011232534465.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soochow College and School of Mathematical Sciences, Soochow University, 215006, Suzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.263761.7", 
          "name": [
            "Soochow College and School of Mathematical Sciences, Soochow University, 215006, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Lijie", 
        "id": "sg:person.010740427117.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010740427117.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Statistics and Mathematics, Zhejiang Gongshang University, 310018, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.413072.3", 
          "name": [
            "School of Statistics and Mathematics, Zhejiang Gongshang University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Qihua", 
        "id": "sg:person.016360612003.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016360612003.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, Texas A&M University, College Station, 77843, Texas, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Department of Statistics, Texas A&M University, College Station, 77843, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Suojin", 
        "id": "sg:person.01136020120.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136020120.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10463-007-0137-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047912137", 
          "https://doi.org/10.1007/s10463-007-0137-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02018047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016958341", 
          "https://doi.org/10.1007/bf02018047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01199788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016544690", 
          "https://doi.org/10.1007/bf01199788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11749-015-0427-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001813025", 
          "https://doi.org/10.1007/s11749-015-0427-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1718-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052093296", 
          "https://doi.org/10.1007/978-1-4612-1718-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11749-019-00655-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113612599", 
          "https://doi.org/10.1007/s11749-019-00655-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11749-016-0480-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046896314", 
          "https://doi.org/10.1007/s11749-016-0480-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10463-010-0311-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048188011", 
          "https://doi.org/10.1007/s10463-010-0311-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11749-014-0392-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036735501", 
          "https://doi.org/10.1007/s11749-014-0392-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-06-08", 
    "datePublishedReg": "2021-06-08", 
    "description": "We consider a weighted local linear estimator based on the inverse selection probability for nonparametric regression with missing covariates at random. The asymptotic distribution of the maximal deviation between the estimator and the true regression function is derived and an asymptotically accurate simultaneous confidence band is constructed. The estimator for the regression function is shown to be oracally efficient in the sense that it is uniformly indistinguishable from that when the selection probabilities are known. Finite sample performance is examined via simulation studies which support our asymptotic theory. The proposed method is demonstrated via an analysis of a data set from the Canada 2010/2011 Youth Student Survey.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10463-021-00784-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8896468", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8304998", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8129997", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8115765", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041657", 
        "issn": [
          "0020-3157", 
          "1572-9052"
        ], 
        "name": "Annals of the Institute of Statistical Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "73"
      }
    ], 
    "keywords": [
      "simultaneous confidence bands", 
      "nonparametric regression", 
      "regression function", 
      "inverse selection probability", 
      "selection probability", 
      "confidence bands", 
      "finite sample performance", 
      "true regression function", 
      "local linear estimator", 
      "asymptotic theory", 
      "linear estimator", 
      "asymptotic distribution", 
      "sample performance", 
      "simulation study", 
      "estimator", 
      "covariate data", 
      "maximal deviation", 
      "probability", 
      "theory", 
      "function", 
      "distribution", 
      "band", 
      "sense", 
      "regression", 
      "deviation", 
      "covariates", 
      "performance", 
      "data", 
      "analysis", 
      "survey", 
      "study", 
      "student surveys", 
      "method", 
      "weighted local linear estimator", 
      "accurate simultaneous confidence band", 
      "Canada 2010/2011 Youth Student Survey", 
      "Youth Student Survey"
    ], 
    "name": "Simultaneous confidence bands for nonparametric regression with missing covariate data", 
    "pagination": "1249-1279", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1138691989"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10463-021-00784-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10463-021-00784-5", 
      "https://app.dimensions.ai/details/publication/pub.1138691989"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_908.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10463-021-00784-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00784-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00784-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00784-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10463-021-00784-5'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      22 PREDICATES      71 URIs      54 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10463-021-00784-5 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N76706908eb6c4d9eb656ca029b1aab65
4 schema:citation sg:pub.10.1007/978-1-4612-1718-3
5 sg:pub.10.1007/bf01199788
6 sg:pub.10.1007/bf02018047
7 sg:pub.10.1007/s10463-007-0137-1
8 sg:pub.10.1007/s10463-010-0311-8
9 sg:pub.10.1007/s11749-014-0392-4
10 sg:pub.10.1007/s11749-015-0427-5
11 sg:pub.10.1007/s11749-016-0480-8
12 sg:pub.10.1007/s11749-019-00655-5
13 schema:datePublished 2021-06-08
14 schema:datePublishedReg 2021-06-08
15 schema:description We consider a weighted local linear estimator based on the inverse selection probability for nonparametric regression with missing covariates at random. The asymptotic distribution of the maximal deviation between the estimator and the true regression function is derived and an asymptotically accurate simultaneous confidence band is constructed. The estimator for the regression function is shown to be oracally efficient in the sense that it is uniformly indistinguishable from that when the selection probabilities are known. Finite sample performance is examined via simulation studies which support our asymptotic theory. The proposed method is demonstrated via an analysis of a data set from the Canada 2010/2011 Youth Student Survey.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N2b82c293b7e741059b19fc80591a8b57
20 Nab496d0db85b42f2b631190d15623acd
21 sg:journal.1041657
22 schema:keywords Canada 2010/2011 Youth Student Survey
23 Youth Student Survey
24 accurate simultaneous confidence band
25 analysis
26 asymptotic distribution
27 asymptotic theory
28 band
29 confidence bands
30 covariate data
31 covariates
32 data
33 deviation
34 distribution
35 estimator
36 finite sample performance
37 function
38 inverse selection probability
39 linear estimator
40 local linear estimator
41 maximal deviation
42 method
43 nonparametric regression
44 performance
45 probability
46 regression
47 regression function
48 sample performance
49 selection probability
50 sense
51 simulation study
52 simultaneous confidence bands
53 student surveys
54 study
55 survey
56 theory
57 true regression function
58 weighted local linear estimator
59 schema:name Simultaneous confidence bands for nonparametric regression with missing covariate data
60 schema:pagination 1249-1279
61 schema:productId N7c90a9e39be942d6ac0aa66153a3e010
62 Nf699c4637fee401c9ebe60a1271d5bf1
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138691989
64 https://doi.org/10.1007/s10463-021-00784-5
65 schema:sdDatePublished 2022-01-01T18:59
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N6c48b95799ce41128a08a34ecb25905a
68 schema:url https://doi.org/10.1007/s10463-021-00784-5
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N2b82c293b7e741059b19fc80591a8b57 schema:issueNumber 6
73 rdf:type schema:PublicationIssue
74 N401e4e1d0f7c45b09ffa1dc7c78c2c60 rdf:first sg:person.010740427117.89
75 rdf:rest N65ff325fcaf34edfbff78fff936aa006
76 N65ff325fcaf34edfbff78fff936aa006 rdf:first sg:person.016360612003.38
77 rdf:rest Na20be1f48e7c45f8a5d56aa28a1b82c7
78 N6c48b95799ce41128a08a34ecb25905a schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N76706908eb6c4d9eb656ca029b1aab65 rdf:first sg:person.011232534465.15
81 rdf:rest N401e4e1d0f7c45b09ffa1dc7c78c2c60
82 N7c90a9e39be942d6ac0aa66153a3e010 schema:name dimensions_id
83 schema:value pub.1138691989
84 rdf:type schema:PropertyValue
85 Na20be1f48e7c45f8a5d56aa28a1b82c7 rdf:first sg:person.01136020120.90
86 rdf:rest rdf:nil
87 Nab496d0db85b42f2b631190d15623acd schema:volumeNumber 73
88 rdf:type schema:PublicationVolume
89 Nf699c4637fee401c9ebe60a1271d5bf1 schema:name doi
90 schema:value 10.1007/s10463-021-00784-5
91 rdf:type schema:PropertyValue
92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
93 schema:name Mathematical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
96 schema:name Statistics
97 rdf:type schema:DefinedTerm
98 sg:grant.8115765 http://pending.schema.org/fundedItem sg:pub.10.1007/s10463-021-00784-5
99 rdf:type schema:MonetaryGrant
100 sg:grant.8129997 http://pending.schema.org/fundedItem sg:pub.10.1007/s10463-021-00784-5
101 rdf:type schema:MonetaryGrant
102 sg:grant.8304998 http://pending.schema.org/fundedItem sg:pub.10.1007/s10463-021-00784-5
103 rdf:type schema:MonetaryGrant
104 sg:grant.8896468 http://pending.schema.org/fundedItem sg:pub.10.1007/s10463-021-00784-5
105 rdf:type schema:MonetaryGrant
106 sg:journal.1041657 schema:issn 0020-3157
107 1572-9052
108 schema:name Annals of the Institute of Statistical Mathematics
109 schema:publisher Springer Nature
110 rdf:type schema:Periodical
111 sg:person.010740427117.89 schema:affiliation grid-institutes:grid.263761.7
112 schema:familyName Gu
113 schema:givenName Lijie
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010740427117.89
115 rdf:type schema:Person
116 sg:person.011232534465.15 schema:affiliation grid-institutes:grid.413072.3
117 schema:familyName Cai
118 schema:givenName Li
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011232534465.15
120 rdf:type schema:Person
121 sg:person.01136020120.90 schema:affiliation grid-institutes:grid.264756.4
122 schema:familyName Wang
123 schema:givenName Suojin
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136020120.90
125 rdf:type schema:Person
126 sg:person.016360612003.38 schema:affiliation grid-institutes:grid.413072.3
127 schema:familyName Wang
128 schema:givenName Qihua
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016360612003.38
130 rdf:type schema:Person
131 sg:pub.10.1007/978-1-4612-1718-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052093296
132 https://doi.org/10.1007/978-1-4612-1718-3
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/bf01199788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016544690
135 https://doi.org/10.1007/bf01199788
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/bf02018047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016958341
138 https://doi.org/10.1007/bf02018047
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s10463-007-0137-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047912137
141 https://doi.org/10.1007/s10463-007-0137-1
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s10463-010-0311-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048188011
144 https://doi.org/10.1007/s10463-010-0311-8
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11749-014-0392-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036735501
147 https://doi.org/10.1007/s11749-014-0392-4
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11749-015-0427-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001813025
150 https://doi.org/10.1007/s11749-015-0427-5
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s11749-016-0480-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046896314
153 https://doi.org/10.1007/s11749-016-0480-8
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11749-019-00655-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113612599
156 https://doi.org/10.1007/s11749-019-00655-5
157 rdf:type schema:CreativeWork
158 grid-institutes:grid.263761.7 schema:alternateName Soochow College and School of Mathematical Sciences, Soochow University, 215006, Suzhou, China
159 schema:name Soochow College and School of Mathematical Sciences, Soochow University, 215006, Suzhou, China
160 rdf:type schema:Organization
161 grid-institutes:grid.264756.4 schema:alternateName Department of Statistics, Texas A&M University, College Station, 77843, Texas, USA
162 schema:name Department of Statistics, Texas A&M University, College Station, 77843, Texas, USA
163 rdf:type schema:Organization
164 grid-institutes:grid.413072.3 schema:alternateName School of Statistics and Mathematics, Zhejiang Gongshang University, 310018, Hangzhou, China
165 schema:name School of Statistics and Mathematics, Zhejiang Gongshang University, 310018, Hangzhou, China
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...