2018-12-01
AUTHORSFabrizio Durante, Juan Fernández Sánchez, Wolfgang Trutschnig
ABSTRACTWe consider spatially homogeneous copulas, i.e. copulas whose corresponding measure is invariant under a special transformations of [0,1]2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,1]^2$$\end{document}, and we study their main properties with a view to possible use in stochastic models. Specifically, we express any spatially homogeneous copula in terms of a probability measure on [0, 1) via the Markov kernel representation. Moreover, we prove some symmetry properties and demonstrate how spatially homogeneous copulas can be used in order to construct copulas with surprisingly singular properties. Finally, a generalization of spatially homogeneous copulas to the so-called (m, n)-spatially homogeneous copulas is studied and a characterization of this new family of copulas in terms of the Markov ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-product is established. More... »
PAGES607-626
http://scigraph.springernature.com/pub.10.1007/s10463-018-0703-8
DOIhttp://dx.doi.org/10.1007/s10463-018-0703-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1110332838
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Dipartimento di Scienze dell\u2019Economia, Universit\u00e0 del Salento, Campus Ecotekne - Palazzina C, Via Monteroni 165, 73100, Lecce, Italy",
"id": "http://www.grid.ac/institutes/grid.9906.6",
"name": [
"Dipartimento di Scienze dell\u2019Economia, Universit\u00e0 del Salento, Campus Ecotekne - Palazzina C, Via Monteroni 165, 73100, Lecce, Italy"
],
"type": "Organization"
},
"familyName": "Durante",
"givenName": "Fabrizio",
"id": "sg:person.013475607471.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013475607471.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Grupo de Investigaci\u00f3n de An\u00e1lisis Matem\u00e1tico, Universidad de Almer\u00eda, Carretera Sacramento s/n, La Ca\u00f1ada de San Urbano, 04120, Almer\u00eda, Spain",
"id": "http://www.grid.ac/institutes/grid.28020.38",
"name": [
"Grupo de Investigaci\u00f3n de An\u00e1lisis Matem\u00e1tico, Universidad de Almer\u00eda, Carretera Sacramento s/n, La Ca\u00f1ada de San Urbano, 04120, Almer\u00eda, Spain"
],
"type": "Organization"
},
"familyName": "Fern\u00e1ndez S\u00e1nchez",
"givenName": "Juan",
"id": "sg:person.013215046135.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013215046135.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department for Mathematics, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria",
"id": "http://www.grid.ac/institutes/grid.7039.d",
"name": [
"Department for Mathematics, University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria"
],
"type": "Organization"
},
"familyName": "Trutschnig",
"givenName": "Wolfgang",
"id": "sg:person.016004135355.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016004135355.53"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/b76887",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013333227",
"https://doi.org/10.1007/b76887"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10463-014-0493-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039040172",
"https://doi.org/10.1007/s10463-014-0493-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00184-009-0259-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038723016",
"https://doi.org/10.1007/s00184-009-0259-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10959-014-0541-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034598204",
"https://doi.org/10.1007/s10959-014-0541-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00537826",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048118031",
"https://doi.org/10.1007/bf00537826"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4614-1891-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003789115",
"https://doi.org/10.1007/978-1-4614-1891-7"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-12-01",
"datePublishedReg": "2018-12-01",
"description": "We consider spatially homogeneous copulas, i.e. copulas whose corresponding measure is invariant under a special transformations of [0,1]2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$[0,1]^2$$\\end{document}, and we study their main properties with a view to possible use in stochastic models. Specifically, we express any spatially homogeneous copula in terms of a probability measure on [0,\u00a01) via the Markov kernel representation. Moreover, we prove some symmetry properties and demonstrate how spatially homogeneous copulas can be used in order to construct copulas with surprisingly singular properties. Finally, a generalization of spatially homogeneous copulas to the so-called (m,\u00a0n)-spatially homogeneous copulas is studied and a characterization of this new family of copulas in terms of the Markov \u2217\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$*$$\\end{document}-product is established.",
"genre": "article",
"id": "sg:pub.10.1007/s10463-018-0703-8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1041657",
"issn": [
"0020-3157",
"1572-9052"
],
"name": "Annals of the Institute of Statistical Mathematics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "72"
}
],
"keywords": [
"probability measure",
"stochastic model",
"symmetry properties",
"special transformation",
"kernel representation",
"main properties",
"singular properties",
"copula",
"new family",
"Markov",
"generalization",
"properties",
"terms",
"representation",
"model",
"corresponding measures",
"transformation",
"order",
"possible use",
"measures",
"view",
"characterization",
"family",
"use",
"products"
],
"name": "Spatially homogeneous copulas",
"pagination": "607-626",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1110332838"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s10463-018-0703-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s10463-018-0703-8",
"https://app.dimensions.ai/details/publication/pub.1110332838"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:34",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_767.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s10463-018-0703-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10463-018-0703-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10463-018-0703-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10463-018-0703-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10463-018-0703-8'
This table displays all metadata directly associated to this object as RDF triples.
127 TRIPLES
22 PREDICATES
56 URIs
42 LITERALS
6 BLANK NODES