Distribution of distances between topologies and its effect on detection of phylogenetic recombination View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-02

AUTHORS

Leonardo de Oliveira Martins, Hirohisa Kishino

ABSTRACT

Inferences about the evolutionary history of biological sequence data are greatly influenced by the presence of recombination, that tends to disrupt the phylogenetic signal. Current recombination detection procedures focus on the phylogenetic disagreement of the data along the aligned sequences, but only recently the link between the quantification of this disagreement and the strength of the recombination was realised. We previously described a hierarchical Bayesian procedure based on the distance between topologies of neighbouring sites and a Poisson-like prior for these distances. Here, we confirm the improvement provided by this topology distance and its prior over existing methods that neglect this information by analysing datasets simulated under a complex evolutionary model. We also show how to obtain a mosaic structure representative of the posterior sample based on a newly developed centroid method. More... »

PAGES

145

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10463-009-0259-8

DOI

http://dx.doi.org/10.1007/s10463-009-0259-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035572386


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Vigo", 
          "id": "https://www.grid.ac/institutes/grid.6312.6", 
          "name": [
            "Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Campus Universitario, 36310, Vigo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Oliveira Martins", 
        "givenName": "Leonardo", 
        "id": "sg:person.01116016500.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116016500.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku Yayoi 1-1-1, 113-8657, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishino", 
        "givenName": "Hirohisa", 
        "id": "sg:person.010337516401.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010337516401.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0712329105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002389179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spl.2004.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009828069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011061298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00178256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012226005", 
          "https://doi.org/10.1007/bf00178256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0002651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020215003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msm088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020427894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-6-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031420454", 
          "https://doi.org/10.1186/1471-2148-6-15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032867388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00026-001-8006-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037793730", 
          "https://doi.org/10.1007/s00026-001-8006-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a004129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038094520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00026-003-0192-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038748253", 
          "https://doi.org/10.1007/s00026-003-0192-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039008589", 
          "https://doi.org/10.1007/bf02101694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02101694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039008589", 
          "https://doi.org/10.1007/bf02101694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039458980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.2500605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043372995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01734359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044065382", 
          "https://doi.org/10.1007/bf01734359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01734359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044065382", 
          "https://doi.org/10.1007/bf01734359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045684541", 
          "https://doi.org/10.1038/nrg964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045684541", 
          "https://doi.org/10.1038/nrg964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047288536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00160154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047784476", 
          "https://doi.org/10.1007/bf00160154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10635150490522304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051847290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052248456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1988.10478694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1995.10476572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/88.4.1055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059421130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1974.1100705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061471419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214503000215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214504000000458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064198183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082735188"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-02", 
    "datePublishedReg": "2010-02-01", 
    "description": "Inferences about the evolutionary history of biological sequence data are greatly influenced by the presence of recombination, that tends to disrupt the phylogenetic signal. Current recombination detection procedures focus on the phylogenetic disagreement of the data along the aligned sequences, but only recently the link between the quantification of this disagreement and the strength of the recombination was realised. We previously described a hierarchical Bayesian procedure based on the distance between topologies of neighbouring sites and a Poisson-like prior for these distances. Here, we confirm the improvement provided by this topology distance and its prior over existing methods that neglect this information by analysing datasets simulated under a complex evolutionary model. We also show how to obtain a mosaic structure representative of the posterior sample based on a newly developed centroid method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10463-009-0259-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041657", 
        "issn": [
          "0020-3157", 
          "1572-9052"
        ], 
        "name": "Annals of the Institute of Statistical Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "name": "Distribution of distances between topologies and its effect on detection of phylogenetic recombination", 
    "pagination": "145", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a973c936a18b3c0df1abcfe107b3f2657f5c9c073bb3af0ddeef20997abdc388"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10463-009-0259-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035572386"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10463-009-0259-8", 
      "https://app.dimensions.ai/details/publication/pub.1035572386"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99806_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10463-009-0259-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10463-009-0259-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10463-009-0259-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10463-009-0259-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10463-009-0259-8'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10463-009-0259-8 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N59565b68f36a4045bad5936dab186212
4 schema:citation sg:pub.10.1007/bf00160154
5 sg:pub.10.1007/bf00178256
6 sg:pub.10.1007/bf01734359
7 sg:pub.10.1007/bf02101694
8 sg:pub.10.1007/s00026-001-8006-8
9 sg:pub.10.1007/s00026-003-0192-0
10 sg:pub.10.1038/nrg964
11 sg:pub.10.1186/1471-2148-6-15
12 https://doi.org/10.1016/j.spl.2004.06.025
13 https://doi.org/10.1073/pnas.0712329105
14 https://doi.org/10.1080/01621459.1988.10478694
15 https://doi.org/10.1080/01621459.1995.10476572
16 https://doi.org/10.1080/10635150490522304
17 https://doi.org/10.1093/bioinformatics/btg427
18 https://doi.org/10.1093/bioinformatics/bti459
19 https://doi.org/10.1093/bioinformatics/btl613
20 https://doi.org/10.1093/biomet/88.4.1055
21 https://doi.org/10.1093/molbev/msm088
22 https://doi.org/10.1093/oxfordjournals.molbev.a004129
23 https://doi.org/10.1093/oxfordjournals.molbev.a040082
24 https://doi.org/10.1109/tac.1974.1100705
25 https://doi.org/10.1111/1467-9868.00353
26 https://doi.org/10.1198/016214503000215
27 https://doi.org/10.1198/016214504000000458
28 https://doi.org/10.1261/rna.2500605
29 https://doi.org/10.1371/journal.pcbi.1000077
30 https://doi.org/10.1371/journal.pone.0002651
31 schema:datePublished 2010-02
32 schema:datePublishedReg 2010-02-01
33 schema:description Inferences about the evolutionary history of biological sequence data are greatly influenced by the presence of recombination, that tends to disrupt the phylogenetic signal. Current recombination detection procedures focus on the phylogenetic disagreement of the data along the aligned sequences, but only recently the link between the quantification of this disagreement and the strength of the recombination was realised. We previously described a hierarchical Bayesian procedure based on the distance between topologies of neighbouring sites and a Poisson-like prior for these distances. Here, we confirm the improvement provided by this topology distance and its prior over existing methods that neglect this information by analysing datasets simulated under a complex evolutionary model. We also show how to obtain a mosaic structure representative of the posterior sample based on a newly developed centroid method.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N6e2db294ba214d49a79151dbacad9bd0
38 Nf95e25130ab74cc093ff9aebe8583f81
39 sg:journal.1041657
40 schema:name Distribution of distances between topologies and its effect on detection of phylogenetic recombination
41 schema:pagination 145
42 schema:productId N2ef0edcfa2ee41209deee6cb0d922fb0
43 N7fec99e3b1334886857b63ab2f651ec3
44 Nd3244bb8dd6d429895368f9de325ceac
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035572386
46 https://doi.org/10.1007/s10463-009-0259-8
47 schema:sdDatePublished 2019-04-11T09:31
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N13fd1d4c4639481b8c55207ad1ad709d
50 schema:url http://link.springer.com/10.1007%2Fs10463-009-0259-8
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N13fd1d4c4639481b8c55207ad1ad709d schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N2ef0edcfa2ee41209deee6cb0d922fb0 schema:name dimensions_id
57 schema:value pub.1035572386
58 rdf:type schema:PropertyValue
59 N59565b68f36a4045bad5936dab186212 rdf:first sg:person.01116016500.00
60 rdf:rest N5af1204f4b23492981e82450399e7a59
61 N5af1204f4b23492981e82450399e7a59 rdf:first sg:person.010337516401.36
62 rdf:rest rdf:nil
63 N6e2db294ba214d49a79151dbacad9bd0 schema:volumeNumber 62
64 rdf:type schema:PublicationVolume
65 N7fec99e3b1334886857b63ab2f651ec3 schema:name doi
66 schema:value 10.1007/s10463-009-0259-8
67 rdf:type schema:PropertyValue
68 Nd3244bb8dd6d429895368f9de325ceac schema:name readcube_id
69 schema:value a973c936a18b3c0df1abcfe107b3f2657f5c9c073bb3af0ddeef20997abdc388
70 rdf:type schema:PropertyValue
71 Nf95e25130ab74cc093ff9aebe8583f81 schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
77 schema:name Statistics
78 rdf:type schema:DefinedTerm
79 sg:journal.1041657 schema:issn 0020-3157
80 1572-9052
81 schema:name Annals of the Institute of Statistical Mathematics
82 rdf:type schema:Periodical
83 sg:person.010337516401.36 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
84 schema:familyName Kishino
85 schema:givenName Hirohisa
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010337516401.36
87 rdf:type schema:Person
88 sg:person.01116016500.00 schema:affiliation https://www.grid.ac/institutes/grid.6312.6
89 schema:familyName de Oliveira Martins
90 schema:givenName Leonardo
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116016500.00
92 rdf:type schema:Person
93 sg:pub.10.1007/bf00160154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047784476
94 https://doi.org/10.1007/bf00160154
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf00178256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012226005
97 https://doi.org/10.1007/bf00178256
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01734359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044065382
100 https://doi.org/10.1007/bf01734359
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf02101694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039008589
103 https://doi.org/10.1007/bf02101694
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00026-001-8006-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037793730
106 https://doi.org/10.1007/s00026-001-8006-8
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00026-003-0192-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038748253
109 https://doi.org/10.1007/s00026-003-0192-0
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nrg964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045684541
112 https://doi.org/10.1038/nrg964
113 rdf:type schema:CreativeWork
114 sg:pub.10.1186/1471-2148-6-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031420454
115 https://doi.org/10.1186/1471-2148-6-15
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.spl.2004.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009828069
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1073/pnas.0712329105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002389179
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1080/01621459.1988.10478694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303671
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1080/01621459.1995.10476572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304855
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1080/10635150490522304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051847290
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1093/bioinformatics/btg427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011061298
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1093/bioinformatics/bti459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039458980
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1093/bioinformatics/btl613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032867388
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1093/biomet/88.4.1055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421130
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/molbev/msm088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020427894
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1093/oxfordjournals.molbev.a004129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038094520
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1093/oxfordjournals.molbev.a040082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082735188
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1111/1467-9868.00353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047288536
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1198/016214503000215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198111
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1198/016214504000000458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064198183
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1261/rna.2500605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043372995
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1371/journal.pcbi.1000077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052248456
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1371/journal.pone.0002651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020215003
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
156 schema:name Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku Yayoi 1-1-1, 113-8657, Tokyo, Japan
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.6312.6 schema:alternateName University of Vigo
159 schema:name Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Campus Universitario, 36310, Vigo, Spain
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...