Bayesian estimation of stochastic volatility models based on OU processes with marginal Gamma law View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-03

AUTHORS

Sylvia Frühwirth-Schnatter, Leopold Sögner

ABSTRACT

This paper discusses practical Bayesian estimation of stochastic volatility models based on OU processes with marginal Gamma laws. Estimation is based on a parameterization which is derived from the Rosiński representation, and has the advantage of being a non-centered parameterization. The parameterization is based on a marked point process, living on the positive real line, with uniformly distributed marks. We define a Markov chain Monte Carlo (MCMC) scheme which enables multiple updates of the latent point process, and generalizes single updating algorithm used earlier. At each MCMC draw more than one point is added or deleted from the latent point process. This is particularly useful for high intensity processes. Furthermore, the article deals with superposition models, where it discuss how the identifiability problem inherent in the superposition model may be avoided by the use of a Markov prior. Finally, applications to simulated data as well as exchange rate data are discussed. More... »

PAGES

159-179

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10463-007-0130-8

DOI

http://dx.doi.org/10.1007/s10463-007-0130-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035898750


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johannes Kepler University of Linz", 
          "id": "https://www.grid.ac/institutes/grid.9970.7", 
          "name": [
            "Department of Applied Statistics and Econometrics, Johannes Kepler Universit\u00e4t Linz, Altenbergerstra\u00dfe 69, 4040, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fr\u00fchwirth-Schnatter", 
        "givenName": "Sylvia", 
        "id": "sg:person.0702362777.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702362777.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Department of Management Science, Vienna University of Technology, Theresianumgasse 27, 1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00f6gner", 
        "givenName": "Leopold", 
        "id": "sg:person.010762430520.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010762430520.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0304-4076(96)01819-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001754041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1540-6261.1987.tb02568.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002102854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0197-7_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005585030", 
          "https://doi.org/10.1007/978-1-4612-0197-7_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0197-7_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005585030", 
          "https://doi.org/10.1007/978-1-4612-0197-7_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1369-7412.2004.05139.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021328463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2005.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028549362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033505213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9868.00282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047027197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1997.10474044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058305293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214501750333063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-2879-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089745766", 
          "https://doi.org/10.1007/978-1-4899-2879-5_1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-03", 
    "datePublishedReg": "2009-03-01", 
    "description": "This paper discusses practical Bayesian estimation of stochastic volatility models based on OU processes with marginal Gamma laws. Estimation is based on a parameterization which is derived from the Rosi\u0144ski representation, and has the advantage of being a non-centered parameterization. The parameterization is based on a marked point process, living on the positive real line, with uniformly distributed marks. We define a Markov chain Monte Carlo (MCMC) scheme which enables multiple updates of the latent point process, and generalizes single updating algorithm used earlier. At each MCMC draw more than one point is added or deleted from the latent point process. This is particularly useful for high intensity processes. Furthermore, the article deals with superposition models, where it discuss how the identifiability problem inherent in the superposition model may be avoided by the use of a Markov prior. Finally, applications to simulated data as well as exchange rate data are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10463-007-0130-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7580396", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1041657", 
        "issn": [
          "0020-3157", 
          "1572-9052"
        ], 
        "name": "Annals of the Institute of Statistical Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "Bayesian estimation of stochastic volatility models based on OU processes with marginal Gamma law", 
    "pagination": "159-179", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ab02a85d343f668c5a5612a7ece4e218fb66684d67d4c62a60ab2a05a19d2026"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10463-007-0130-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035898750"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10463-007-0130-8", 
      "https://app.dimensions.ai/details/publication/pub.1035898750"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13078_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs10463-007-0130-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10463-007-0130-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10463-007-0130-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10463-007-0130-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10463-007-0130-8'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10463-007-0130-8 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N92ba23ba2b9d4feb836466865e480ce6
4 schema:citation sg:pub.10.1007/978-1-4612-0197-7_18
5 sg:pub.10.1007/978-1-4899-2879-5_1
6 https://doi.org/10.1016/j.jeconom.2005.07.007
7 https://doi.org/10.1016/s0304-4076(96)01819-2
8 https://doi.org/10.1080/01621459.1997.10474044
9 https://doi.org/10.1111/1467-9868.00265
10 https://doi.org/10.1111/1467-9868.00282
11 https://doi.org/10.1111/j.1369-7412.2004.05139.x
12 https://doi.org/10.1111/j.1540-6261.1987.tb02568.x
13 https://doi.org/10.1198/016214501750333063
14 schema:datePublished 2009-03
15 schema:datePublishedReg 2009-03-01
16 schema:description This paper discusses practical Bayesian estimation of stochastic volatility models based on OU processes with marginal Gamma laws. Estimation is based on a parameterization which is derived from the Rosiński representation, and has the advantage of being a non-centered parameterization. The parameterization is based on a marked point process, living on the positive real line, with uniformly distributed marks. We define a Markov chain Monte Carlo (MCMC) scheme which enables multiple updates of the latent point process, and generalizes single updating algorithm used earlier. At each MCMC draw more than one point is added or deleted from the latent point process. This is particularly useful for high intensity processes. Furthermore, the article deals with superposition models, where it discuss how the identifiability problem inherent in the superposition model may be avoided by the use of a Markov prior. Finally, applications to simulated data as well as exchange rate data are discussed.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N3b49c2584dcf4046b04e5e2521530301
21 Nf6558973a2d14d7fac69698d0fad171a
22 sg:journal.1041657
23 schema:name Bayesian estimation of stochastic volatility models based on OU processes with marginal Gamma law
24 schema:pagination 159-179
25 schema:productId N76ef67884ae34f4a83331e256821f0db
26 N8ca3f0839d3f430aaec266485878499f
27 Nef44527ee4504f0c9404243fd0a16208
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035898750
29 https://doi.org/10.1007/s10463-007-0130-8
30 schema:sdDatePublished 2019-04-11T14:28
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N21ca7693a5f5454d98e53aff78b0fcd3
33 schema:url http://link.springer.com/10.1007%2Fs10463-007-0130-8
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N21ca7693a5f5454d98e53aff78b0fcd3 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N3b49c2584dcf4046b04e5e2521530301 schema:issueNumber 1
40 rdf:type schema:PublicationIssue
41 N76ef67884ae34f4a83331e256821f0db schema:name dimensions_id
42 schema:value pub.1035898750
43 rdf:type schema:PropertyValue
44 N8ca3f0839d3f430aaec266485878499f schema:name doi
45 schema:value 10.1007/s10463-007-0130-8
46 rdf:type schema:PropertyValue
47 N92ba23ba2b9d4feb836466865e480ce6 rdf:first sg:person.0702362777.46
48 rdf:rest Nb5b637116b1b4fb1a69cfdb3f39d188f
49 Nb5b637116b1b4fb1a69cfdb3f39d188f rdf:first sg:person.010762430520.49
50 rdf:rest rdf:nil
51 Nef44527ee4504f0c9404243fd0a16208 schema:name readcube_id
52 schema:value ab02a85d343f668c5a5612a7ece4e218fb66684d67d4c62a60ab2a05a19d2026
53 rdf:type schema:PropertyValue
54 Nf6558973a2d14d7fac69698d0fad171a schema:volumeNumber 61
55 rdf:type schema:PublicationVolume
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
60 schema:name Statistics
61 rdf:type schema:DefinedTerm
62 sg:grant.7580396 http://pending.schema.org/fundedItem sg:pub.10.1007/s10463-007-0130-8
63 rdf:type schema:MonetaryGrant
64 sg:journal.1041657 schema:issn 0020-3157
65 1572-9052
66 schema:name Annals of the Institute of Statistical Mathematics
67 rdf:type schema:Periodical
68 sg:person.010762430520.49 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
69 schema:familyName Sögner
70 schema:givenName Leopold
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010762430520.49
72 rdf:type schema:Person
73 sg:person.0702362777.46 schema:affiliation https://www.grid.ac/institutes/grid.9970.7
74 schema:familyName Frühwirth-Schnatter
75 schema:givenName Sylvia
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702362777.46
77 rdf:type schema:Person
78 sg:pub.10.1007/978-1-4612-0197-7_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005585030
79 https://doi.org/10.1007/978-1-4612-0197-7_18
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/978-1-4899-2879-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089745766
82 https://doi.org/10.1007/978-1-4899-2879-5_1
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/j.jeconom.2005.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028549362
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/s0304-4076(96)01819-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001754041
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1080/01621459.1997.10474044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058305293
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1111/1467-9868.00265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033505213
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1111/1467-9868.00282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047027197
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1111/j.1369-7412.2004.05139.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021328463
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1111/j.1540-6261.1987.tb02568.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002102854
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1198/016214501750333063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197824
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
101 schema:name Department of Management Science, Vienna University of Technology, Theresianumgasse 27, 1040, Vienna, Austria
102 rdf:type schema:Organization
103 https://www.grid.ac/institutes/grid.9970.7 schema:alternateName Johannes Kepler University of Linz
104 schema:name Department of Applied Statistics and Econometrics, Johannes Kepler Universität Linz, Altenbergerstraße 69, 4040, Linz, Austria
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...