A wavelet-based hybrid neural network for short-term electricity prices forecasting View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-01

AUTHORS

Foued Saâdaoui, Hana Rabbouch

ABSTRACT

Forecasting is a very important and difficult task for various economic activities. Despite the great evolution of time series modeling, forecasters are still in the hunt for better strategies to improve mathematical models and come up with more accurate predictions. In this respect, several new models, mixing autoregressive processes to artificial neural networks (ANNs), have recently emerged. This is particularly the case for energy economics, where old forecasting tools are replaced by new hybrid strategies. Along the same lines, this paper aims to define a wavelet-based hybridization, involving nonlinear smooth functions, autoregressive fractionally integrated moving average (ARFIMA) model and feedforward ANNs, for electricity spot prices forecasting. The use of the wavelet decomposition in this model allows to characterize certain patterns of power time series, such as the nonlinear trend and multiple seasonal effects, and to exactly extrapolate them over the time scale. In fact, such patterns have already been pointed out as potential causes of the ANN’s inaccuracy. An ARFIMA–ANN model is then used to forecast the resulting irregular component. In the last stage, the smooth and irregular components are recombined to constitute the forecasted price. We will demonstrate the cost-effectiveness of the proposed method using hourly power prices from the Nord Pool Exchange. The testing time series consists of 52,614 observations and corresponds to the period ranging from 2012 to 2017. The results show that the new method is able to provide better interval forecasting than four benchmark models. More... »

PAGES

1-21

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10462-019-09702-x

DOI

http://dx.doi.org/10.1007/s10462-019-09702-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113175083


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Monastir", 
          "id": "https://www.grid.ac/institutes/grid.411838.7", 
          "name": [
            "Department of Statistics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia", 
            "Laboratoire d\u2019Alg\u00e8bre, Th\u00e9orie de Nombres et Analyse Non-lin\u00e9aire, Facult\u00e9 des Sciences, University of Monastir, 5019, Monastir, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sa\u00e2daoui", 
        "givenName": "Foued", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Sup\u00e9rieur de Gestion de Tunis", 
          "id": "https://www.grid.ac/institutes/grid.464580.b", 
          "name": [
            "Laboratoire d\u2019Alg\u00e8bre, Th\u00e9orie de Nombres et Analyse Non-lin\u00e9aire, Facult\u00e9 des Sciences, University of Monastir, 5019, Monastir, Tunisia", 
            "Institut Sup\u00e9rieur de Gestion de Tunis, Universit\u00e9 de Tunis, Cit\u00e9 Bouchoucha, 2000, Tunis, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rabbouch", 
        "givenName": "Hana", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejor.2003.08.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002548461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0266466602186075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003205325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2013.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004562526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.03.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008494247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijepes.2013.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010988390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2007.09.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011119086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2013.08.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011561882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2008.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013357597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eneco.2015.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015619959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10614-012-9346-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016836458", 
          "https://doi.org/10.1007/s10614-012-9346-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2008.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020172635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0952813x.2013.813976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025060550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(01)00702-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028809124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2009.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030035165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.omega.2004.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039872163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2005.11.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046239201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijforecast.2014.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046783053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9892.1980.tb00297.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048224994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1998.0193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048418364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90003-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049232775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(89)90003-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049232775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2006.10.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049775571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(91)90009-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050371510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(91)90009-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050371510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/en81011770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050877502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-016-2356-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050879227", 
          "https://doi.org/10.1007/s00521-016-2356-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijforecast.2008.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051452945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-131x(199909)18:5<359::aid-for746>3.0.co;2-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051929617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2013.2288675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061804115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219691304000561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063003803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219691311004353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063004180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/gber.2012.049870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067428774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5923/j.ajis.20120202.02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073507961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfds.2017.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084088033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/etep.2362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084759729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2017.04.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085200459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2017.05.234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086041696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isemantic.2016.7873810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094050025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511841040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/for.2544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107144191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118673362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108565103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511606885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109394523"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-01", 
    "datePublishedReg": "2019-04-01", 
    "description": "Forecasting is a very important and difficult task for various economic activities. Despite the great evolution of time series modeling, forecasters are still in the hunt for better strategies to improve mathematical models and come up with more accurate predictions. In this respect, several new models, mixing autoregressive processes to artificial neural networks (ANNs), have recently emerged. This is particularly the case for energy economics, where old forecasting tools are replaced by new hybrid strategies. Along the same lines, this paper aims to define a wavelet-based hybridization, involving nonlinear smooth functions, autoregressive fractionally integrated moving average (ARFIMA) model and feedforward ANNs, for electricity spot prices forecasting. The use of the wavelet decomposition in this model allows to characterize certain patterns of power time series, such as the nonlinear trend and multiple seasonal effects, and to exactly extrapolate them over the time scale. In fact, such patterns have already been pointed out as potential causes of the ANN\u2019s inaccuracy. An ARFIMA\u2013ANN model is then used to forecast the resulting irregular component. In the last stage, the smooth and irregular components are recombined to constitute the forecasted price. We will demonstrate the cost-effectiveness of the proposed method using hourly power prices from the Nord Pool Exchange. The testing time series consists of 52,614 observations and corresponds to the period ranging from 2012 to 2017. The results show that the new method is able to provide better interval forecasting than four benchmark models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10462-019-09702-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1126843", 
        "issn": [
          "0269-2821", 
          "1573-7462"
        ], 
        "name": "Artificial Intelligence Review", 
        "type": "Periodical"
      }
    ], 
    "name": "A wavelet-based hybrid neural network for short-term electricity prices forecasting", 
    "pagination": "1-21", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a42e88f68b0444561f94189eb5576b6840242412cd7372bb35d6ef5be8603096"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10462-019-09702-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113175083"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10462-019-09702-x", 
      "https://app.dimensions.ai/details/publication/pub.1113175083"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130826_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10462-019-09702-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10462-019-09702-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10462-019-09702-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10462-019-09702-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10462-019-09702-x'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      64 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10462-019-09702-x schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author N9ba194b657974976a2f8042a7aeef87d
4 schema:citation sg:pub.10.1007/s00521-016-2356-y
5 sg:pub.10.1007/s10614-012-9346-7
6 https://doi.org/10.1002/(sici)1099-131x(199909)18:5<359::aid-for746>3.0.co;2-p
7 https://doi.org/10.1002/9781118673362
8 https://doi.org/10.1002/etep.2362
9 https://doi.org/10.1002/for.2544
10 https://doi.org/10.1016/0893-6080(89)90003-8
11 https://doi.org/10.1016/0893-6080(91)90009-t
12 https://doi.org/10.1016/j.amc.2007.09.067
13 https://doi.org/10.1016/j.apenergy.2008.07.005
14 https://doi.org/10.1016/j.apm.2013.10.002
15 https://doi.org/10.1016/j.csda.2006.10.027
16 https://doi.org/10.1016/j.csda.2008.11.011
17 https://doi.org/10.1016/j.csda.2009.12.010
18 https://doi.org/10.1016/j.ejor.2003.08.037
19 https://doi.org/10.1016/j.eneco.2015.05.014
20 https://doi.org/10.1016/j.eswa.2005.11.027
21 https://doi.org/10.1016/j.eswa.2014.03.030
22 https://doi.org/10.1016/j.ijepes.2013.09.004
23 https://doi.org/10.1016/j.ijforecast.2008.08.003
24 https://doi.org/10.1016/j.ijforecast.2014.08.008
25 https://doi.org/10.1016/j.jfds.2017.03.001
26 https://doi.org/10.1016/j.jhydrol.2013.08.030
27 https://doi.org/10.1016/j.omega.2004.07.024
28 https://doi.org/10.1016/j.physa.2017.04.074
29 https://doi.org/10.1016/j.rser.2017.05.234
30 https://doi.org/10.1016/s0925-2312(01)00702-0
31 https://doi.org/10.1017/cbo9780511606885
32 https://doi.org/10.1017/cbo9780511841040
33 https://doi.org/10.1017/s0266466602186075
34 https://doi.org/10.1080/0952813x.2013.813976
35 https://doi.org/10.1098/rspa.1998.0193
36 https://doi.org/10.1109/isemantic.2016.7873810
37 https://doi.org/10.1109/tsp.2013.2288675
38 https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
39 https://doi.org/10.1142/s0219691304000561
40 https://doi.org/10.1142/s0219691311004353
41 https://doi.org/10.1504/gber.2012.049870
42 https://doi.org/10.3390/en81011770
43 https://doi.org/10.5923/j.ajis.20120202.02
44 schema:datePublished 2019-04-01
45 schema:datePublishedReg 2019-04-01
46 schema:description Forecasting is a very important and difficult task for various economic activities. Despite the great evolution of time series modeling, forecasters are still in the hunt for better strategies to improve mathematical models and come up with more accurate predictions. In this respect, several new models, mixing autoregressive processes to artificial neural networks (ANNs), have recently emerged. This is particularly the case for energy economics, where old forecasting tools are replaced by new hybrid strategies. Along the same lines, this paper aims to define a wavelet-based hybridization, involving nonlinear smooth functions, autoregressive fractionally integrated moving average (ARFIMA) model and feedforward ANNs, for electricity spot prices forecasting. The use of the wavelet decomposition in this model allows to characterize certain patterns of power time series, such as the nonlinear trend and multiple seasonal effects, and to exactly extrapolate them over the time scale. In fact, such patterns have already been pointed out as potential causes of the ANN’s inaccuracy. An ARFIMA–ANN model is then used to forecast the resulting irregular component. In the last stage, the smooth and irregular components are recombined to constitute the forecasted price. We will demonstrate the cost-effectiveness of the proposed method using hourly power prices from the Nord Pool Exchange. The testing time series consists of 52,614 observations and corresponds to the period ranging from 2012 to 2017. The results show that the new method is able to provide better interval forecasting than four benchmark models.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf sg:journal.1126843
51 schema:name A wavelet-based hybrid neural network for short-term electricity prices forecasting
52 schema:pagination 1-21
53 schema:productId N2439c857d12b45b8b10f0e52a0e3b63b
54 N5eafbef6f5064997821d925dfd7a9dfd
55 Nddcda517212f4d45be4c5c13f30f0ccb
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113175083
57 https://doi.org/10.1007/s10462-019-09702-x
58 schema:sdDatePublished 2019-04-11T14:00
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nc3079c281d084ed8b35e89d012c76bcb
61 schema:url https://link.springer.com/10.1007%2Fs10462-019-09702-x
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N2208ce4bc0754168bf2d80062ad671e0 schema:affiliation https://www.grid.ac/institutes/grid.411838.7
66 schema:familyName Saâdaoui
67 schema:givenName Foued
68 rdf:type schema:Person
69 N2439c857d12b45b8b10f0e52a0e3b63b schema:name readcube_id
70 schema:value a42e88f68b0444561f94189eb5576b6840242412cd7372bb35d6ef5be8603096
71 rdf:type schema:PropertyValue
72 N5eafbef6f5064997821d925dfd7a9dfd schema:name doi
73 schema:value 10.1007/s10462-019-09702-x
74 rdf:type schema:PropertyValue
75 N6244fa5eff634e57948b5c83509e8c79 rdf:first N7c23c4f4df09436f829fe5f8a1fcb3ac
76 rdf:rest rdf:nil
77 N7c23c4f4df09436f829fe5f8a1fcb3ac schema:affiliation https://www.grid.ac/institutes/grid.464580.b
78 schema:familyName Rabbouch
79 schema:givenName Hana
80 rdf:type schema:Person
81 N9ba194b657974976a2f8042a7aeef87d rdf:first N2208ce4bc0754168bf2d80062ad671e0
82 rdf:rest N6244fa5eff634e57948b5c83509e8c79
83 Nc3079c281d084ed8b35e89d012c76bcb schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nddcda517212f4d45be4c5c13f30f0ccb schema:name dimensions_id
86 schema:value pub.1113175083
87 rdf:type schema:PropertyValue
88 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
89 schema:name Economics
90 rdf:type schema:DefinedTerm
91 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
92 schema:name Econometrics
93 rdf:type schema:DefinedTerm
94 sg:journal.1126843 schema:issn 0269-2821
95 1573-7462
96 schema:name Artificial Intelligence Review
97 rdf:type schema:Periodical
98 sg:pub.10.1007/s00521-016-2356-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1050879227
99 https://doi.org/10.1007/s00521-016-2356-y
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s10614-012-9346-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016836458
102 https://doi.org/10.1007/s10614-012-9346-7
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/(sici)1099-131x(199909)18:5<359::aid-for746>3.0.co;2-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1051929617
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/9781118673362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108565103
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/etep.2362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084759729
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/for.2544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107144191
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0893-6080(89)90003-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049232775
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0893-6080(91)90009-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1050371510
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.amc.2007.09.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011119086
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.apenergy.2008.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020172635
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.apm.2013.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004562526
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.csda.2006.10.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049775571
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.csda.2008.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013357597
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.csda.2009.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030035165
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.ejor.2003.08.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002548461
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.eneco.2015.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015619959
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.eswa.2005.11.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046239201
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.eswa.2014.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008494247
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.ijepes.2013.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010988390
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ijforecast.2008.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051452945
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.ijforecast.2014.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046783053
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jfds.2017.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084088033
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jhydrol.2013.08.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011561882
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.omega.2004.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039872163
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.physa.2017.04.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085200459
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.rser.2017.05.234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086041696
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0925-2312(01)00702-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028809124
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1017/cbo9780511606885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109394523
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1017/cbo9780511841040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667415
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1017/s0266466602186075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003205325
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1080/0952813x.2013.813976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025060550
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1098/rspa.1998.0193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048418364
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/isemantic.2016.7873810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094050025
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tsp.2013.2288675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804115
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1111/j.1467-9892.1980.tb00297.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048224994
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1142/s0219691304000561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063003803
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1142/s0219691311004353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063004180
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1504/gber.2012.049870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067428774
175 rdf:type schema:CreativeWork
176 https://doi.org/10.3390/en81011770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050877502
177 rdf:type schema:CreativeWork
178 https://doi.org/10.5923/j.ajis.20120202.02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073507961
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.411838.7 schema:alternateName University of Monastir
181 schema:name Department of Statistics, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia
182 Laboratoire d’Algèbre, Théorie de Nombres et Analyse Non-linéaire, Faculté des Sciences, University of Monastir, 5019, Monastir, Tunisia
183 rdf:type schema:Organization
184 https://www.grid.ac/institutes/grid.464580.b schema:alternateName Institut Supérieur de Gestion de Tunis
185 schema:name Institut Supérieur de Gestion de Tunis, Université de Tunis, Cité Bouchoucha, 2000, Tunis, Tunisia
186 Laboratoire d’Algèbre, Théorie de Nombres et Analyse Non-linéaire, Faculté des Sciences, University of Monastir, 5019, Monastir, Tunisia
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...