Inferring true voting outcomes in homophilic social networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-27

AUTHORS

John A. Doucette, Alan Tsang, Hadi Hosseini, Kate Larson, Robin Cohen

ABSTRACT

We investigate the problem of binary opinion aggregation in a social network regarding an objective outcome. Agents receive independent noisy signals relating to the outcome, but may converse with their neighbors in the network before opinions are aggregated, resulting in incorrect opinions gaining prominence in the network. Recent work has shown that, in the general case, there is no procedure for inferring the correct outcome that incorporates information from the connections between agents (i.e. the structure of the social network). We develop a new approach for inferring the true outcome that can benefit from the additional information provided by the social network, under the simple assumption that agents will more readily convert to the true opinion than to a false one, generating a homophilic effect for voters with the correct opinion. Our proposed approach is computationally efficient, and provides significantly more accurate inference in many domains, which we demonstrate via both simulated and real-world datasets. We also theoretically characterize the properties that are necessary for our approach to perform well. Finally, we extend our approach to directed social networks, and cases with many alternatives, and outline areas for future research. More... »

PAGES

1-32

References to SciGraph publications

  • 2016-08. Computational social choice for coordination in agent networks in ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE
  • 2015. Minority Becomes Majority in Social Networks in WEB AND INTERNET ECONOMICS
  • 2014. Bridging Social Network Analysis and Judgment Aggregation in SOCIAL INFORMATICS
  • 2014-05. Majority dynamics and aggregation of information in social networks in AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10458-019-09405-1

    DOI

    http://dx.doi.org/10.1007/s10458-019-09405-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112441772


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "New College of Florida", 
              "id": "https://www.grid.ac/institutes/grid.422569.e", 
              "name": [
                "New College of Florida, Sarasota, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Doucette", 
            "givenName": "John A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Singapore", 
              "id": "https://www.grid.ac/institutes/grid.4280.e", 
              "name": [
                "National University of Singapore, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tsang", 
            "givenName": "Alan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rochester Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.262613.2", 
              "name": [
                "Rochester Institute of Technology, Rochester, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hosseini", 
            "givenName": "Hadi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "University of Waterloo, Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Larson", 
            "givenName": "Kate", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Waterloo", 
              "id": "https://www.grid.ac/institutes/grid.46078.3d", 
              "name": [
                "University of Waterloo, Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cohen", 
            "givenName": "Robin", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1146/annurev.soc.24.1.265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002870279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mathsocsci.2011.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006781451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.74.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008594690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.74.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008594690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2792838.2800190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010284129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/nws.2014.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010688069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10472-015-9462-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010784220", 
              "https://doi.org/10.1007/s10472-015-9462-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/0022250x.1990.9990069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013050006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-442450-0.50025-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019740316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-48995-6_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025487786", 
              "https://doi.org/10.1007/978-3-662-48995-6_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2764468.2764518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026605341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/956750.956769", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034921751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10458-013-9230-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038615305", 
              "https://doi.org/10.1007/s10458-013-9230-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1645953.1646052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039435994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpubeco.2016.08.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040050834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3982/te1204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040519869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-13734-6_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041595907", 
              "https://doi.org/10.1007/978-3-319-13734-6_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1699114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057769646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/57.1.97", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059417905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcyb.2013.2279019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061579533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/allerton.2013.6736702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094326479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24963/ijcai.2017/124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096024736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2492002.2482570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098844365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2785979", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102895264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24963/ijcai.2018/30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105386406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1613/jair.5282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105690102"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-27", 
        "datePublishedReg": "2019-02-27", 
        "description": "We investigate the problem of binary opinion aggregation in a social network regarding an objective outcome. Agents receive independent noisy signals relating to the outcome, but may converse with their neighbors in the network before opinions are aggregated, resulting in incorrect opinions gaining prominence in the network. Recent work has shown that, in the general case, there is no procedure for inferring the correct outcome that incorporates information from the connections between agents (i.e. the structure of the social network). We develop a new approach for inferring the true outcome that can benefit from the additional information provided by the social network, under the simple assumption that agents will more readily convert to the true opinion than to a false one, generating a homophilic effect for voters with the correct opinion. Our proposed approach is computationally efficient, and provides significantly more accurate inference in many domains, which we demonstrate via both simulated and real-world datasets. We also theoretically characterize the properties that are necessary for our approach to perform well. Finally, we extend our approach to directed social networks, and cases with many alternatives, and outline areas for future research.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10458-019-09405-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1030506", 
            "issn": [
              "1387-2532", 
              "1573-7454"
            ], 
            "name": "Autonomous Agents and Multi-Agent Systems", 
            "type": "Periodical"
          }
        ], 
        "name": "Inferring true voting outcomes in homophilic social networks", 
        "pagination": "1-32", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f1c6efdcaf4e22e4421f1a6a7c624f3ad548f9dcc7b71e991c25e57aff722a08"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10458-019-09405-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112441772"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10458-019-09405-1", 
          "https://app.dimensions.ai/details/publication/pub.1112441772"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:15", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54297_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10458-019-09405-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10458-019-09405-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10458-019-09405-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10458-019-09405-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10458-019-09405-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    166 TRIPLES      21 PREDICATES      49 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10458-019-09405-1 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author Nb7fd306f812849ec9c106638d578d114
    4 schema:citation sg:pub.10.1007/978-3-319-13734-6_2
    5 sg:pub.10.1007/978-3-662-48995-6_6
    6 sg:pub.10.1007/s10458-013-9230-4
    7 sg:pub.10.1007/s10472-015-9462-x
    8 https://doi.org/10.1016/b978-0-12-442450-0.50025-0
    9 https://doi.org/10.1016/j.jpubeco.2016.08.011
    10 https://doi.org/10.1016/j.mathsocsci.2011.03.006
    11 https://doi.org/10.1017/nws.2014.1
    12 https://doi.org/10.1063/1.1699114
    13 https://doi.org/10.1080/0022250x.1990.9990069
    14 https://doi.org/10.1093/biomet/57.1.97
    15 https://doi.org/10.1103/revmodphys.74.47
    16 https://doi.org/10.1109/allerton.2013.6736702
    17 https://doi.org/10.1109/tcyb.2013.2279019
    18 https://doi.org/10.1145/1645953.1646052
    19 https://doi.org/10.1145/2492002.2482570
    20 https://doi.org/10.1145/2764468.2764518
    21 https://doi.org/10.1145/2792838.2800190
    22 https://doi.org/10.1145/956750.956769
    23 https://doi.org/10.1146/annurev.soc.24.1.265
    24 https://doi.org/10.1613/jair.5282
    25 https://doi.org/10.2307/2785979
    26 https://doi.org/10.24963/ijcai.2017/124
    27 https://doi.org/10.24963/ijcai.2018/30
    28 https://doi.org/10.3982/te1204
    29 schema:datePublished 2019-02-27
    30 schema:datePublishedReg 2019-02-27
    31 schema:description We investigate the problem of binary opinion aggregation in a social network regarding an objective outcome. Agents receive independent noisy signals relating to the outcome, but may converse with their neighbors in the network before opinions are aggregated, resulting in incorrect opinions gaining prominence in the network. Recent work has shown that, in the general case, there is no procedure for inferring the correct outcome that incorporates information from the connections between agents (i.e. the structure of the social network). We develop a new approach for inferring the true outcome that can benefit from the additional information provided by the social network, under the simple assumption that agents will more readily convert to the true opinion than to a false one, generating a homophilic effect for voters with the correct opinion. Our proposed approach is computationally efficient, and provides significantly more accurate inference in many domains, which we demonstrate via both simulated and real-world datasets. We also theoretically characterize the properties that are necessary for our approach to perform well. Finally, we extend our approach to directed social networks, and cases with many alternatives, and outline areas for future research.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf sg:journal.1030506
    36 schema:name Inferring true voting outcomes in homophilic social networks
    37 schema:pagination 1-32
    38 schema:productId N8375b01075d44050a7f89fdb916cc31d
    39 N8a9ce8b050ae4284922fcd3ebad8d354
    40 Ndf01aab3e1a64dde9b167bf6fbc97847
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112441772
    42 https://doi.org/10.1007/s10458-019-09405-1
    43 schema:sdDatePublished 2019-04-11T10:15
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N54a07a2ada524942889b8c4b98fba118
    46 schema:url https://link.springer.com/10.1007%2Fs10458-019-09405-1
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N03b65607bb5f405ebc28ed5a1ec8f568 rdf:first N49e8214333c843e698151c846600dabf
    51 rdf:rest N092320c8c1fc4b4b9e3a9090b63289f7
    52 N092320c8c1fc4b4b9e3a9090b63289f7 rdf:first N78084b14eae649a9add7a64e5a76718c
    53 rdf:rest N88085142c0fe43bf9ec22ccadcebc5c8
    54 N0ce86150dc47451fb8330b0856a04fbe schema:affiliation https://www.grid.ac/institutes/grid.422569.e
    55 schema:familyName Doucette
    56 schema:givenName John A.
    57 rdf:type schema:Person
    58 N2c632efbf98e4f02b553f6afe9d3b4f7 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    59 schema:familyName Cohen
    60 schema:givenName Robin
    61 rdf:type schema:Person
    62 N49e8214333c843e698151c846600dabf schema:affiliation https://www.grid.ac/institutes/grid.262613.2
    63 schema:familyName Hosseini
    64 schema:givenName Hadi
    65 rdf:type schema:Person
    66 N54a07a2ada524942889b8c4b98fba118 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 N78084b14eae649a9add7a64e5a76718c schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
    69 schema:familyName Larson
    70 schema:givenName Kate
    71 rdf:type schema:Person
    72 N8375b01075d44050a7f89fdb916cc31d schema:name dimensions_id
    73 schema:value pub.1112441772
    74 rdf:type schema:PropertyValue
    75 N88085142c0fe43bf9ec22ccadcebc5c8 rdf:first N2c632efbf98e4f02b553f6afe9d3b4f7
    76 rdf:rest rdf:nil
    77 N8a9ce8b050ae4284922fcd3ebad8d354 schema:name readcube_id
    78 schema:value f1c6efdcaf4e22e4421f1a6a7c624f3ad548f9dcc7b71e991c25e57aff722a08
    79 rdf:type schema:PropertyValue
    80 Na0271ce0be4d4d8bb55498e2d50dbed0 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
    81 schema:familyName Tsang
    82 schema:givenName Alan
    83 rdf:type schema:Person
    84 Nb7fd306f812849ec9c106638d578d114 rdf:first N0ce86150dc47451fb8330b0856a04fbe
    85 rdf:rest Nc11926e0d2b74ff4b1f15a1b8b6cb5dc
    86 Nc11926e0d2b74ff4b1f15a1b8b6cb5dc rdf:first Na0271ce0be4d4d8bb55498e2d50dbed0
    87 rdf:rest N03b65607bb5f405ebc28ed5a1ec8f568
    88 Ndf01aab3e1a64dde9b167bf6fbc97847 schema:name doi
    89 schema:value 10.1007/s10458-019-09405-1
    90 rdf:type schema:PropertyValue
    91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Information and Computing Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Information Systems
    96 rdf:type schema:DefinedTerm
    97 sg:journal.1030506 schema:issn 1387-2532
    98 1573-7454
    99 schema:name Autonomous Agents and Multi-Agent Systems
    100 rdf:type schema:Periodical
    101 sg:pub.10.1007/978-3-319-13734-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041595907
    102 https://doi.org/10.1007/978-3-319-13734-6_2
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/978-3-662-48995-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025487786
    105 https://doi.org/10.1007/978-3-662-48995-6_6
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/s10458-013-9230-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038615305
    108 https://doi.org/10.1007/s10458-013-9230-4
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s10472-015-9462-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010784220
    111 https://doi.org/10.1007/s10472-015-9462-x
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/b978-0-12-442450-0.50025-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019740316
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.jpubeco.2016.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040050834
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.mathsocsci.2011.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006781451
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1017/nws.2014.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010688069
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1063/1.1699114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769646
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1080/0022250x.1990.9990069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013050006
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1093/biomet/57.1.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417905
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1109/allerton.2013.6736702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094326479
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/tcyb.2013.2279019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579533
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1145/1645953.1646052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039435994
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1145/2492002.2482570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098844365
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1145/2764468.2764518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026605341
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1145/2792838.2800190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010284129
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1145/956750.956769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034921751
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1146/annurev.soc.24.1.265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002870279
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1613/jair.5282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105690102
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.2307/2785979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102895264
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.24963/ijcai.2017/124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096024736
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.24963/ijcai.2018/30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105386406
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.3982/te1204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040519869
    154 rdf:type schema:CreativeWork
    155 https://www.grid.ac/institutes/grid.262613.2 schema:alternateName Rochester Institute of Technology
    156 schema:name Rochester Institute of Technology, Rochester, NY, USA
    157 rdf:type schema:Organization
    158 https://www.grid.ac/institutes/grid.422569.e schema:alternateName New College of Florida
    159 schema:name New College of Florida, Sarasota, USA
    160 rdf:type schema:Organization
    161 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
    162 schema:name National University of Singapore, Singapore, Singapore
    163 rdf:type schema:Organization
    164 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
    165 schema:name University of Waterloo, Waterloo, ON, Canada
    166 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...