Variational aspects of homogeneous geodesics on generalized flag manifolds and applications View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04

AUTHORS

Rafaela F. do Prado, Lino Grama

ABSTRACT

We study conjugate points along homogeneous geodesics in generalized flag manifolds. This is done by analyzing the second variation of the energy of such geodesics. We also give an example of how the homogeneous Ricci flow can evolve in such way to produce conjugate points in the complex projective space CP2n+1=Sp(n+1)/(U(1)×Sp(n)). More... »

PAGES

1-27

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10455-018-9635-z

DOI

http://dx.doi.org/10.1007/s10455-018-9635-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1108017815


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Federal Institute of Bras\u00edlia", 
          "id": "https://www.grid.ac/institutes/grid.472905.d", 
          "name": [
            "Federal Institute of Bras\u00edlia - IFB - Campus Gama, Bras\u00edlia, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prado", 
        "givenName": "Rafaela F. do", 
        "id": "sg:person.014376104217.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014376104217.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State University of Campinas", 
          "id": "https://www.grid.ac/institutes/grid.411087.b", 
          "name": [
            "Department of Mathematics - IMECC, University of Campinas, Campinas, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grama", 
        "givenName": "Lino", 
        "id": "sg:person.015425221523.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015425221523.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10455-013-9395-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000662082", 
          "https://doi.org/10.1007/s10455-013-9395-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1008720151", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0095561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008720151", 
          "https://doi.org/10.1007/bfb0095561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0095561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008720151", 
          "https://doi.org/10.1007/bfb0095561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02567391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009020535", 
          "https://doi.org/10.1007/bf02567391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10455-016-9502-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009685014", 
          "https://doi.org/10.1007/s10455-016-9502-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10455-011-9248-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012407417", 
          "https://doi.org/10.1007/s10455-011-9248-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01456947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015289229", 
          "https://doi.org/10.1007/bf01456947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01456947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015289229", 
          "https://doi.org/10.1007/bf01456947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.indag.2011.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016292018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-07-04277-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031278038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005287907806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040007120", 
          "https://doi.org/10.1023/a:1005287907806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02564419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046463400", 
          "https://doi.org/10.1007/bf02564419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00039-007-0617-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048269881", 
          "https://doi.org/10.1007/s00039-007-0617-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0001-8708(02)00073-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050182296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-2014-06476-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059336241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2969/jmsj/03010039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070930915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1406552252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084460555"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We study conjugate points along homogeneous geodesics in generalized flag manifolds. This is done by analyzing the second variation of the energy of such geodesics. We also give an example of how the homogeneous Ricci flow can evolve in such way to produce conjugate points in the complex projective space CP2n+1=Sp(n+1)/(U(1)\u00d7Sp(n)).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s10455-018-9635-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4477753", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136504", 
        "issn": [
          "0232-704X", 
          "1572-9060"
        ], 
        "name": "Annals of Global Analysis and Geometry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "Variational aspects of homogeneous geodesics on generalized flag manifolds and applications", 
    "pagination": "1-27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b6ea7787ddd1b8d2e91c10cf3fa1de85ae6851470389e90e153a11fc7839014d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10455-018-9635-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1108017815"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10455-018-9635-z", 
      "https://app.dimensions.ai/details/publication/pub.1108017815"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117117_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs10455-018-9635-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10455-018-9635-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10455-018-9635-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10455-018-9635-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10455-018-9635-z'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10455-018-9635-z schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf611d6bd5927443ea542e95c88d84d5d
4 schema:citation sg:pub.10.1007/bf01456947
5 sg:pub.10.1007/bf02564419
6 sg:pub.10.1007/bf02567391
7 sg:pub.10.1007/bfb0095561
8 sg:pub.10.1007/s00039-007-0617-8
9 sg:pub.10.1007/s10455-011-9248-2
10 sg:pub.10.1007/s10455-013-9395-8
11 sg:pub.10.1007/s10455-016-9502-8
12 sg:pub.10.1023/a:1005287907806
13 https://app.dimensions.ai/details/publication/pub.1008720151
14 https://doi.org/10.1016/j.indag.2011.10.004
15 https://doi.org/10.1016/s0001-8708(02)00073-7
16 https://doi.org/10.1090/s0002-9947-07-04277-8
17 https://doi.org/10.1090/s0002-9947-2014-06476-3
18 https://doi.org/10.2969/jmsj/03010039
19 https://doi.org/10.4310/jdg/1406552252
20 schema:datePublished 2019-04
21 schema:datePublishedReg 2019-04-01
22 schema:description We study conjugate points along homogeneous geodesics in generalized flag manifolds. This is done by analyzing the second variation of the energy of such geodesics. We also give an example of how the homogeneous Ricci flow can evolve in such way to produce conjugate points in the complex projective space CP2n+1=Sp(n+1)/(U(1)×Sp(n)).
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf Ne17d1abcecd84cf698046a962dac694a
27 Ne9617973f94d4ca396b0b7e994c54017
28 sg:journal.1136504
29 schema:name Variational aspects of homogeneous geodesics on generalized flag manifolds and applications
30 schema:pagination 1-27
31 schema:productId N2d9414d1b69447b8bb0edbfc3e9206d6
32 N3b211de30b0e455782f061b9bb9fde5a
33 N82ef01c9db57430082f8bce600063a09
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108017815
35 https://doi.org/10.1007/s10455-018-9635-z
36 schema:sdDatePublished 2019-04-11T14:19
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N381ed5475c5648389aad12f9480523c9
39 schema:url https://link.springer.com/10.1007%2Fs10455-018-9635-z
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N2d9414d1b69447b8bb0edbfc3e9206d6 schema:name doi
44 schema:value 10.1007/s10455-018-9635-z
45 rdf:type schema:PropertyValue
46 N381ed5475c5648389aad12f9480523c9 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N3b211de30b0e455782f061b9bb9fde5a schema:name readcube_id
49 schema:value b6ea7787ddd1b8d2e91c10cf3fa1de85ae6851470389e90e153a11fc7839014d
50 rdf:type schema:PropertyValue
51 N82ef01c9db57430082f8bce600063a09 schema:name dimensions_id
52 schema:value pub.1108017815
53 rdf:type schema:PropertyValue
54 Na93344d1515f4b0dad7f0a07ffc53b78 rdf:first sg:person.015425221523.53
55 rdf:rest rdf:nil
56 Ne17d1abcecd84cf698046a962dac694a schema:volumeNumber 55
57 rdf:type schema:PublicationVolume
58 Ne9617973f94d4ca396b0b7e994c54017 schema:issueNumber 3
59 rdf:type schema:PublicationIssue
60 Nf611d6bd5927443ea542e95c88d84d5d rdf:first sg:person.014376104217.24
61 rdf:rest Na93344d1515f4b0dad7f0a07ffc53b78
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:grant.4477753 http://pending.schema.org/fundedItem sg:pub.10.1007/s10455-018-9635-z
69 rdf:type schema:MonetaryGrant
70 sg:journal.1136504 schema:issn 0232-704X
71 1572-9060
72 schema:name Annals of Global Analysis and Geometry
73 rdf:type schema:Periodical
74 sg:person.014376104217.24 schema:affiliation https://www.grid.ac/institutes/grid.472905.d
75 schema:familyName Prado
76 schema:givenName Rafaela F. do
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014376104217.24
78 rdf:type schema:Person
79 sg:person.015425221523.53 schema:affiliation https://www.grid.ac/institutes/grid.411087.b
80 schema:familyName Grama
81 schema:givenName Lino
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015425221523.53
83 rdf:type schema:Person
84 sg:pub.10.1007/bf01456947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015289229
85 https://doi.org/10.1007/bf01456947
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf02564419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046463400
88 https://doi.org/10.1007/bf02564419
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf02567391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009020535
91 https://doi.org/10.1007/bf02567391
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bfb0095561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008720151
94 https://doi.org/10.1007/bfb0095561
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s00039-007-0617-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048269881
97 https://doi.org/10.1007/s00039-007-0617-8
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s10455-011-9248-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012407417
100 https://doi.org/10.1007/s10455-011-9248-2
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10455-013-9395-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000662082
103 https://doi.org/10.1007/s10455-013-9395-8
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s10455-016-9502-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009685014
106 https://doi.org/10.1007/s10455-016-9502-8
107 rdf:type schema:CreativeWork
108 sg:pub.10.1023/a:1005287907806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040007120
109 https://doi.org/10.1023/a:1005287907806
110 rdf:type schema:CreativeWork
111 https://app.dimensions.ai/details/publication/pub.1008720151 schema:CreativeWork
112 https://doi.org/10.1016/j.indag.2011.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016292018
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0001-8708(02)00073-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050182296
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1090/s0002-9947-07-04277-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031278038
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1090/s0002-9947-2014-06476-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059336241
119 rdf:type schema:CreativeWork
120 https://doi.org/10.2969/jmsj/03010039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070930915
121 rdf:type schema:CreativeWork
122 https://doi.org/10.4310/jdg/1406552252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084460555
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.411087.b schema:alternateName State University of Campinas
125 schema:name Department of Mathematics - IMECC, University of Campinas, Campinas, Brazil
126 rdf:type schema:Organization
127 https://www.grid.ac/institutes/grid.472905.d schema:alternateName Federal Institute of Brasília
128 schema:name Federal Institute of Brasília - IFB - Campus Gama, Brasília, Brazil
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...