Homogeneous Weyl connections of non-positive curvature View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02-27

AUTHORS

Gabriela Tereszkiewicz, Maciej P. Wojtkowski

ABSTRACT

We study homogeneous Weyl connections with non-positive sectional curvatures. The Cartesian product S1×M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb S}^1 \times M$$\end{document} carries canonical families of Weyl connections with such a property, for any compact Riemmanian manifold M. We prove that if a homogeneous Weyl connection on a manifold, modeled on a unimodular Lie group, is non-positive in a stronger sense (stretched non-positive), then it must be locally of the product type. More... »

PAGES

209-229

References to SciGraph publications

  • 1984-12. La 1-forme de torsion d'une variété hermitienne compacte in MATHEMATISCHE ANNALEN
  • 1997-12. SRB States and Nonequilibrium Statistical Mechanics Close to Equilibrium in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1974-03. On homogeneous manifolds of negative curvature in MATHEMATISCHE ANNALEN
  • 2007-12-04. Gaussian Thermostats as Geodesic Flows of Nonsymmetric Linear Connections in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2007-03-23. Entropy Production in Thermostats II in JOURNAL OF STATISTICAL PHYSICS
  • 1997-10. Homogeneous Einstein–Weyl Structures on Symmetric Spaces in ANNALS OF GLOBAL ANALYSIS AND GEOMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10455-016-9526-0

    DOI

    http://dx.doi.org/10.1007/s10455-016-9526-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084024654


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Mathematics and Computer Science, University of Opole, 45-052, Opole, Poland", 
              "id": "http://www.grid.ac/institutes/grid.107891.6", 
              "name": [
                "Institute of Mathematics and Computer Science, University of Opole, 45-052, Opole, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tereszkiewicz", 
            "givenName": "Gabriela", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mathematics and Computer Science, University of Opole, 45-052, Opole, Poland", 
              "id": "http://www.grid.ac/institutes/grid.107891.6", 
              "name": [
                "Institute of Mathematics and Computer Science, University of Opole, 45-052, Opole, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wojtkowski", 
            "givenName": "Maciej P.", 
            "id": "sg:person.016425135207.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425135207.90"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s002200050241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033074508", 
              "https://doi.org/10.1007/s002200050241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01455968", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031818020", 
              "https://doi.org/10.1007/bf01455968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-007-0376-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009409560", 
              "https://doi.org/10.1007/s00220-007-0376-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1006572327056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049929285", 
              "https://doi.org/10.1023/a:1006572327056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01344139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041582351", 
              "https://doi.org/10.1007/bf01344139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-007-9301-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015107287", 
              "https://doi.org/10.1007/s10955-007-9301-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02-27", 
        "datePublishedReg": "2017-02-27", 
        "description": "We study homogeneous Weyl connections with non-positive sectional curvatures. The Cartesian product S1\u00d7M\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathbb S}^1 \\times M$$\\end{document} carries canonical families of Weyl connections with such a property, for any compact Riemmanian manifold M. We prove that if a homogeneous Weyl connection on a manifold, modeled on a unimodular Lie group, is non-positive in a stronger sense (stretched non-positive), then it must be locally of the product type.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10455-016-9526-0", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136504", 
            "issn": [
              "0232-704X", 
              "1572-9060"
            ], 
            "name": "Annals of Global Analysis and Geometry", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "51"
          }
        ], 
        "keywords": [
          "group", 
          "family", 
          "types", 
          "product type", 
          "connection", 
          "M.", 
          "products", 
          "strong sense", 
          "curvature", 
          "canonical family", 
          "sense", 
          "properties", 
          "Weyl connection", 
          "sectional curvature", 
          "non-positive sectional curvature", 
          "Cartesian product", 
          "manifold M.", 
          "manifold", 
          "unimodular Lie groups", 
          "Lie groups", 
          "non-positive curvature"
        ], 
        "name": "Homogeneous Weyl connections of non-positive curvature", 
        "pagination": "209-229", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084024654"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10455-016-9526-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10455-016-9526-0", 
          "https://app.dimensions.ai/details/publication/pub.1084024654"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_717.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10455-016-9526-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10455-016-9526-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10455-016-9526-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10455-016-9526-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10455-016-9526-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    108 TRIPLES      21 PREDICATES      51 URIs      37 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10455-016-9526-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N52346b2321524e218fe9af3cec870a17
    4 schema:citation sg:pub.10.1007/bf01344139
    5 sg:pub.10.1007/bf01455968
    6 sg:pub.10.1007/s00220-007-0376-2
    7 sg:pub.10.1007/s002200050241
    8 sg:pub.10.1007/s10955-007-9301-5
    9 sg:pub.10.1023/a:1006572327056
    10 schema:datePublished 2017-02-27
    11 schema:datePublishedReg 2017-02-27
    12 schema:description We study homogeneous Weyl connections with non-positive sectional curvatures. The Cartesian product S1×M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb S}^1 \times M$$\end{document} carries canonical families of Weyl connections with such a property, for any compact Riemmanian manifold M. We prove that if a homogeneous Weyl connection on a manifold, modeled on a unimodular Lie group, is non-positive in a stronger sense (stretched non-positive), then it must be locally of the product type.
    13 schema:genre article
    14 schema:isAccessibleForFree true
    15 schema:isPartOf Nd3986284a7824ce29b69e95df6728b6c
    16 Ne02981c385a946e283540936a4ce84e4
    17 sg:journal.1136504
    18 schema:keywords Cartesian product
    19 Lie groups
    20 M.
    21 Weyl connection
    22 canonical family
    23 connection
    24 curvature
    25 family
    26 group
    27 manifold
    28 manifold M.
    29 non-positive curvature
    30 non-positive sectional curvature
    31 product type
    32 products
    33 properties
    34 sectional curvature
    35 sense
    36 strong sense
    37 types
    38 unimodular Lie groups
    39 schema:name Homogeneous Weyl connections of non-positive curvature
    40 schema:pagination 209-229
    41 schema:productId N6182335880234a809b19a91def1e993a
    42 Ne4952c5dbdc942fc99dde0bb0be61895
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084024654
    44 https://doi.org/10.1007/s10455-016-9526-0
    45 schema:sdDatePublished 2022-12-01T06:35
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N39fd7abe605e48f3b6f833ad8f81dd26
    48 schema:url https://doi.org/10.1007/s10455-016-9526-0
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N39fd7abe605e48f3b6f833ad8f81dd26 schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 N52346b2321524e218fe9af3cec870a17 rdf:first Nd649b15e110f4ef3aa9a012f5d2fd9e0
    55 rdf:rest Nb5bbcfe0a12340e3ac14d7b554ae5818
    56 N6182335880234a809b19a91def1e993a schema:name doi
    57 schema:value 10.1007/s10455-016-9526-0
    58 rdf:type schema:PropertyValue
    59 Nb5bbcfe0a12340e3ac14d7b554ae5818 rdf:first sg:person.016425135207.90
    60 rdf:rest rdf:nil
    61 Nd3986284a7824ce29b69e95df6728b6c schema:issueNumber 3
    62 rdf:type schema:PublicationIssue
    63 Nd649b15e110f4ef3aa9a012f5d2fd9e0 schema:affiliation grid-institutes:grid.107891.6
    64 schema:familyName Tereszkiewicz
    65 schema:givenName Gabriela
    66 rdf:type schema:Person
    67 Ne02981c385a946e283540936a4ce84e4 schema:volumeNumber 51
    68 rdf:type schema:PublicationVolume
    69 Ne4952c5dbdc942fc99dde0bb0be61895 schema:name dimensions_id
    70 schema:value pub.1084024654
    71 rdf:type schema:PropertyValue
    72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Mathematical Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Pure Mathematics
    77 rdf:type schema:DefinedTerm
    78 sg:journal.1136504 schema:issn 0232-704X
    79 1572-9060
    80 schema:name Annals of Global Analysis and Geometry
    81 schema:publisher Springer Nature
    82 rdf:type schema:Periodical
    83 sg:person.016425135207.90 schema:affiliation grid-institutes:grid.107891.6
    84 schema:familyName Wojtkowski
    85 schema:givenName Maciej P.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016425135207.90
    87 rdf:type schema:Person
    88 sg:pub.10.1007/bf01344139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041582351
    89 https://doi.org/10.1007/bf01344139
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bf01455968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031818020
    92 https://doi.org/10.1007/bf01455968
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s00220-007-0376-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009409560
    95 https://doi.org/10.1007/s00220-007-0376-2
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s002200050241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033074508
    98 https://doi.org/10.1007/s002200050241
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/s10955-007-9301-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015107287
    101 https://doi.org/10.1007/s10955-007-9301-5
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1023/a:1006572327056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049929285
    104 https://doi.org/10.1023/a:1006572327056
    105 rdf:type schema:CreativeWork
    106 grid-institutes:grid.107891.6 schema:alternateName Institute of Mathematics and Computer Science, University of Opole, 45-052, Opole, Poland
    107 schema:name Institute of Mathematics and Computer Science, University of Opole, 45-052, Opole, Poland
    108 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...