Almost Extrinsically Homogeneous Submanifolds of Euclidean Space View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-01

AUTHORS

Peter Quast

ABSTRACT

Consider a closed manifold M immersed in Rm. Suppose that the trivial bundle M × Rm = T M ⊗ ν M is equipped with an almost metric connection ~ ∇ which almost preserves the decomposition of M × Rm into the tangent and the normal bundle. Assume moreover that the difference Γ = ∂~∇ with the usual derivative ∂ in Rm is almost ~∇-parallel. Then M admits an extrinsically homogeneous immersion into Rm. Mathematics Subject Classifications (2000): 53C20, 53C24, 53C30, 53C42, 53C40. More... »

PAGES

1-16

References to SciGraph publications

  • 1980-02. Symmetric submanifolds of euclidean space in MATHEMATISCHE ANNALEN
  • 2004-12. A pinching theorem for extrinsically symmetric submanifolds of Euclidean space in MANUSCRIPTA MATHEMATICA
  • 1998-10. Parallelity and extrinsic homogeneity in MATHEMATISCHE ZEITSCHRIFT
  • 1979-02. Symmetric submanifolds of Riemannian manifolds in MATHEMATISCHE ANNALEN
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10455-006-7278-y

    DOI

    http://dx.doi.org/10.1007/s10455-006-7278-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016096262


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Fribourg", 
              "id": "https://www.grid.ac/institutes/grid.8534.a", 
              "name": [
                "Institut f\u00fcr Mathematik, Universit\u00e4t Augsburg, 86159, Augsburg, Germany", 
                "D\u00e9partement de math\u00e9matiques, Universit\u00e9 de Fribourg, 1700, Fribourg, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Quast", 
            "givenName": "Peter", 
            "id": "sg:person.0634445707.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634445707.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/pl00004659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016703088", 
              "https://doi.org/10.1007/pl00004659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00229-004-0501-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020637774", 
              "https://doi.org/10.1007/s00229-004-0501-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/crll.1991.420.195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030602967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/9780203499153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031313316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01359868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049836584", 
              "https://doi.org/10.1007/bf01359868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01359868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049836584", 
              "https://doi.org/10.1007/bf01359868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01420428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053353578", 
              "https://doi.org/10.1007/bf01420428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01420428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053353578", 
              "https://doi.org/10.1007/bf01420428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2372398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069899070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2969/jmsj/04110057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070931442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24033/asens.1369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084407937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214428257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084458791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214454294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084459979"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/mmono/149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101567925"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-01", 
        "datePublishedReg": "2006-01-01", 
        "description": "Consider a closed manifold M immersed in Rm. Suppose that the trivial bundle M \u00d7 Rm = T M \u2297 \u03bd M is equipped with an almost metric connection ~ \u2207 which almost preserves the decomposition of M \u00d7 Rm into the tangent and the normal bundle. Assume moreover that the difference \u0393 = \u2202~\u2207 with the usual derivative \u2202 in Rm is almost ~\u2207-parallel. Then M admits an extrinsically homogeneous immersion into Rm. Mathematics Subject Classifications (2000): 53C20, 53C24, 53C30, 53C42, 53C40.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10455-006-7278-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136504", 
            "issn": [
              "0232-704X", 
              "1572-9060"
            ], 
            "name": "Annals of Global Analysis and Geometry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "name": "Almost Extrinsically Homogeneous Submanifolds of Euclidean Space", 
        "pagination": "1-16", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4cb1ed6d787d3b1729096ee871e3134a98c5e9421fbcf56b550e90e0a6068ebb"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10455-006-7278-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016096262"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10455-006-7278-y", 
          "https://app.dimensions.ai/details/publication/pub.1016096262"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71695_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs10455-006-7278-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10455-006-7278-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10455-006-7278-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10455-006-7278-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10455-006-7278-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    102 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10455-006-7278-y schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N2f98103771f0497aa4b8169c04528a7c
    4 schema:citation sg:pub.10.1007/bf01359868
    5 sg:pub.10.1007/bf01420428
    6 sg:pub.10.1007/pl00004659
    7 sg:pub.10.1007/s00229-004-0501-x
    8 https://doi.org/10.1090/mmono/149
    9 https://doi.org/10.1201/9780203499153
    10 https://doi.org/10.1515/crll.1991.420.195
    11 https://doi.org/10.2307/2372398
    12 https://doi.org/10.24033/asens.1369
    13 https://doi.org/10.2969/jmsj/04110057
    14 https://doi.org/10.4310/jdg/1214428257
    15 https://doi.org/10.4310/jdg/1214454294
    16 schema:datePublished 2006-01
    17 schema:datePublishedReg 2006-01-01
    18 schema:description Consider a closed manifold M immersed in Rm. Suppose that the trivial bundle M × Rm = T M ⊗ ν M is equipped with an almost metric connection ~ ∇ which almost preserves the decomposition of M × Rm into the tangent and the normal bundle. Assume moreover that the difference Γ = ∂~∇ with the usual derivative ∂ in Rm is almost ~∇-parallel. Then M admits an extrinsically homogeneous immersion into Rm. Mathematics Subject Classifications (2000): 53C20, 53C24, 53C30, 53C42, 53C40.
    19 schema:genre research_article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N6d4322cfae9440aebd28ce45e2a73d92
    23 Nb522406a5a844b4b8e8037f53f22b010
    24 sg:journal.1136504
    25 schema:name Almost Extrinsically Homogeneous Submanifolds of Euclidean Space
    26 schema:pagination 1-16
    27 schema:productId N0f66253114e2485ca8a043373e1fbffc
    28 Nc15ddcbc9cfd44ee9db80c10aaa5934a
    29 Ncd43c2c892694466b9dc00988b68eaba
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016096262
    31 https://doi.org/10.1007/s10455-006-7278-y
    32 schema:sdDatePublished 2019-04-11T12:59
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N088db3bc4b7645098eb7fa99a3e3234e
    35 schema:url http://link.springer.com/10.1007%2Fs10455-006-7278-y
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset articles
    38 rdf:type schema:ScholarlyArticle
    39 N088db3bc4b7645098eb7fa99a3e3234e schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 N0f66253114e2485ca8a043373e1fbffc schema:name readcube_id
    42 schema:value 4cb1ed6d787d3b1729096ee871e3134a98c5e9421fbcf56b550e90e0a6068ebb
    43 rdf:type schema:PropertyValue
    44 N2f98103771f0497aa4b8169c04528a7c rdf:first sg:person.0634445707.95
    45 rdf:rest rdf:nil
    46 N6d4322cfae9440aebd28ce45e2a73d92 schema:volumeNumber 29
    47 rdf:type schema:PublicationVolume
    48 Nb522406a5a844b4b8e8037f53f22b010 schema:issueNumber 1
    49 rdf:type schema:PublicationIssue
    50 Nc15ddcbc9cfd44ee9db80c10aaa5934a schema:name dimensions_id
    51 schema:value pub.1016096262
    52 rdf:type schema:PropertyValue
    53 Ncd43c2c892694466b9dc00988b68eaba schema:name doi
    54 schema:value 10.1007/s10455-006-7278-y
    55 rdf:type schema:PropertyValue
    56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Mathematical Sciences
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Pure Mathematics
    61 rdf:type schema:DefinedTerm
    62 sg:journal.1136504 schema:issn 0232-704X
    63 1572-9060
    64 schema:name Annals of Global Analysis and Geometry
    65 rdf:type schema:Periodical
    66 sg:person.0634445707.95 schema:affiliation https://www.grid.ac/institutes/grid.8534.a
    67 schema:familyName Quast
    68 schema:givenName Peter
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634445707.95
    70 rdf:type schema:Person
    71 sg:pub.10.1007/bf01359868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049836584
    72 https://doi.org/10.1007/bf01359868
    73 rdf:type schema:CreativeWork
    74 sg:pub.10.1007/bf01420428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053353578
    75 https://doi.org/10.1007/bf01420428
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/pl00004659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016703088
    78 https://doi.org/10.1007/pl00004659
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/s00229-004-0501-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020637774
    81 https://doi.org/10.1007/s00229-004-0501-x
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1090/mmono/149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567925
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1201/9780203499153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031313316
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1515/crll.1991.420.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030602967
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.2307/2372398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899070
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.24033/asens.1369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084407937
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.2969/jmsj/04110057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070931442
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.4310/jdg/1214428257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084458791
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.4310/jdg/1214454294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459979
    98 rdf:type schema:CreativeWork
    99 https://www.grid.ac/institutes/grid.8534.a schema:alternateName University of Fribourg
    100 schema:name Département de mathématiques, Université de Fribourg, 1700, Fribourg, Switzerland
    101 Institut für Mathematik, Universität Augsburg, 86159, Augsburg, Germany
    102 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...