Rising variance and abrupt shifts of subfossil chironomids due to eutrophication in a deep sub-alpine lake View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03-27

AUTHORS

Simon Belle, Virgile Baudrot, Andrea Lami, Simona Musazzi, Vasilis Dakos

ABSTRACT

In response to anthropogenic eutrophication and global warming, deep-water oxygen depletion is expected to have large effects on freshwater lake biogeochemistry and resident communities. In particular, it has been observed that deep-water hypoxia may potentially lead to regime shifts of lake benthic communities. We explored such community shifts by reconstructing a high-resolution subfossil chironomid record from a sediment core collected in the sub-alpine lake Remoray in France. We identified an abrupt shift in chironomid composition triggered by the collapse of the dominant Sergentia coracina-type chironomids around 1980. We found that the collapse of Sergentia coracina type was coupled to a gradual increase in organic matter content in lake sediments caused by eutrophication. We concluded that the most probable cause for the collapse of Sergentia coracina type was a change in oxygen concentrations below the minimal threshold for larval growth. We also analyzed trends in variance and autocorrelation of chironomid dynamics to test whether they can be used as early warnings of the Sergentia collapse. We found that variance rose prior to the collapse, but it was marginally significant (Kendal rank correlation 0.71, p = 0.05), whereas autocorrelation increased but insignificantly and less strongly (Kendal rank correlation 0.23, p = 0.25). By combining reconstructions of ecosystem dynamics and environmental drivers, our approach demonstrates how lake sediments may provide insights into the long-term dynamics of oxygen in lakes and its impact on aquatic fauna. More... »

PAGES

307-319

References to SciGraph publications

  • 2006-01-01. The “Anthropocene” in EARTH SYSTEM SCIENCE IN THE ANTHROPOCENE
  • 2013-08-08. Methane emissions from Mexican freshwater bodies: correlations with water pollution in HYDROBIOLOGIA
  • 1993-07. Factors governing the spatial and temporal distribution of Chironomid larvae in the Maarsseveen lakes with special emphasis on the role of oxygen conditions in AQUATIC ECOLOGY
  • 1984-12. A universal law of the characteristic return time near thresholds in OECOLOGIA
  • 2013-04-28. Flickering as an early warning signal in THEORETICAL ECOLOGY
  • 2001-10. Catastrophic shifts in ecosystems in NATURE
  • 2013-06-26. Diatom flickering prior to regime shift in NATURE
  • 2001. Midges: Chironomidae and Related Diptera in TRACKING ENVIRONMENTAL CHANGE USING LAKE SEDIMENTS
  • 1992-03. Paleolimnology: an important tool for effective ecosystem management in JOURNAL OF AQUATIC ECOSYSTEM STRESS AND RECOVERY
  • 2015-11-12. Climate and human land-use as a driver of Lake Narlay (Eastern France, Jura Mountains) evolution over the last 1200 years: implication for methane cycle in JOURNAL OF PALEOLIMNOLOGY
  • 2010-09-08. Early warning signals of extinction in deteriorating environments in NATURE
  • 2011-12-25. Recovery rates reflect distance to a tipping point in a living system in NATURE
  • 2001-01. An identification guide to subfossil Tanypodinae larvae (Insecta: Diptera: Chrironomidae) based on cephalic setation in JOURNAL OF PALEOLIMNOLOGY
  • 2014-08-07. Temporal changes in the contribution of methane-oxidizing bacteria to the biomass of chironomid larvae determined using stable carbon isotopes and ancient DNA in JOURNAL OF PALEOLIMNOLOGY
  • 2013-05-17. Chironomid assemblages in cores from multiple water depths reflect oxygen-driven changes in a deep French lake over the last 150 years in JOURNAL OF PALEOLIMNOLOGY
  • 2010-04-27. Use of sedimentary pigments to infer past phosphorus concentration in lakes in JOURNAL OF PALEOLIMNOLOGY
  • 2012-11-18. Flickering gives early warning signals of a critical transition to a eutrophic lake state in NATURE
  • 2009-09-03. Early-warning signals for critical transitions in NATURE
  • 2012-02-08. From Classical to Canonical Ordination in TRACKING ENVIRONMENTAL CHANGE USING LAKE SEDIMENTS
  • 2010-09-26. Reconstruction of the recent history of a large deep prealpine lake (Lake Bourget, France) using subfossil chironomids, diatoms, and organic matter analysis: towards the definition of a lake-specific reference state in JOURNAL OF PALEOLIMNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10452-017-9618-3

    DOI

    http://dx.doi.org/10.1007/s10452-017-9618-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084024650


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Ecology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Center for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartumaa, Estonia", 
              "id": "http://www.grid.ac/institutes/grid.16697.3f", 
              "name": [
                "UMR CNRS 6249, Laboratoire de Chrono-Environnement, Universit\u00e9 de Bourgogne Franche-Comt\u00e9, Besan\u00e7on, France", 
                "Center for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartumaa, Estonia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Belle", 
            "givenName": "Simon", 
            "id": "sg:person.011414724171.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011414724171.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "UMR CNRS 6249, Laboratoire de Chrono-Environnement, Universit\u00e9 de Bourgogne Franche-Comt\u00e9, Besan\u00e7on, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "UMR CNRS 6249, Laboratoire de Chrono-Environnement, Universit\u00e9 de Bourgogne Franche-Comt\u00e9, Besan\u00e7on, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baudrot", 
            "givenName": "Virgile", 
            "id": "sg:person.01275542305.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275542305.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CNR, Istituto per lo Studio degli Ecosistemi, Verbania, Pallanza, Italy", 
              "id": "http://www.grid.ac/institutes/grid.483628.3", 
              "name": [
                "CNR, Istituto per lo Studio degli Ecosistemi, Verbania, Pallanza, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lami", 
            "givenName": "Andrea", 
            "id": "sg:person.010253454673.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253454673.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "CNR, Istituto per lo Studio degli Ecosistemi, Verbania, Pallanza, Italy", 
              "id": "http://www.grid.ac/institutes/grid.483628.3", 
              "name": [
                "CNR, Istituto per lo Studio degli Ecosistemi, Verbania, Pallanza, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Musazzi", 
            "givenName": "Simona", 
            "id": "sg:person.012173022326.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012173022326.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut des Sciences de l\u2019Evolution de Montpellier (ISEM), BioDIC\u00e9e team, CNRS, Universit\u00e9 de Montpellier, Montpellier, France", 
              "id": "http://www.grid.ac/institutes/grid.462058.d", 
              "name": [
                "Institute of Integrative Biology, Center for Adaptation to a Changing Environment, ETH Z\u00fcrich, Zurich, Switzerland", 
                "Institut des Sciences de l\u2019Evolution de Montpellier (ISEM), BioDIC\u00e9e team, CNRS, Universit\u00e9 de Montpellier, Montpellier, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dakos", 
            "givenName": "Vasilis", 
            "id": "sg:person.01053510057.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053510057.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1008185517959", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018639775", 
              "https://doi.org/10.1023/a:1008185517959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10933-010-9421-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028991948", 
              "https://doi.org/10.1007/s10933-010-9421-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10933-015-9864-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011138021", 
              "https://doi.org/10.1007/s10933-015-9864-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35098000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039450839", 
              "https://doi.org/10.1038/35098000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10933-010-9467-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050735149", 
              "https://doi.org/10.1007/s10933-010-9467-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-007-2745-8_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022854337", 
              "https://doi.org/10.1007/978-94-007-2745-8_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10933-013-9722-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044474820", 
              "https://doi.org/10.1007/s10933-013-9722-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022084192", 
              "https://doi.org/10.1038/nature10723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00044408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044861119", 
              "https://doi.org/10.1007/bf00044408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-26590-2_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019635620", 
              "https://doi.org/10.1007/3-540-26590-2_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12080-013-0186-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040245770", 
              "https://doi.org/10.1007/s12080-013-0186-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02336926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017864207", 
              "https://doi.org/10.1007/bf02336926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10933-014-9789-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036530330", 
              "https://doi.org/10.1007/s10933-014-9789-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/0-306-47671-1_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042687136", 
              "https://doi.org/10.1007/0-306-47671-1_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026883290", 
              "https://doi.org/10.1038/nature12272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019367407", 
              "https://doi.org/10.1038/nature08227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10750-013-1632-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053291191", 
              "https://doi.org/10.1007/s10750-013-1632-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026743684", 
              "https://doi.org/10.1038/nature11655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00384470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001837666", 
              "https://doi.org/10.1007/bf00384470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034831932", 
              "https://doi.org/10.1038/nature09389"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03-27", 
        "datePublishedReg": "2017-03-27", 
        "description": "In response to anthropogenic eutrophication and global warming, deep-water oxygen depletion is expected to have large effects on freshwater lake biogeochemistry and resident communities. In particular, it has been observed that deep-water hypoxia may potentially lead to regime shifts of lake benthic communities. We explored such community shifts by reconstructing a high-resolution subfossil chironomid record from a sediment core collected in the sub-alpine lake Remoray in France. We identified an abrupt shift in chironomid composition triggered by the collapse of the dominant Sergentia coracina-type chironomids around 1980. We found that the collapse of Sergentia coracina type was coupled to a gradual increase in organic matter content in lake sediments caused by eutrophication. We concluded that the most probable cause for the collapse of Sergentia coracina type was a change in oxygen concentrations below the minimal threshold for larval growth. We also analyzed trends in variance and autocorrelation of chironomid dynamics to test whether they can be used as early warnings of the Sergentia collapse. We found that variance rose prior to the collapse, but it was marginally significant (Kendal rank correlation 0.71, p\u00a0=\u00a00.05), whereas autocorrelation increased but insignificantly and less strongly (Kendal rank correlation 0.23, p\u00a0=\u00a00.25). By combining reconstructions of ecosystem dynamics and environmental drivers, our approach demonstrates how lake sediments may provide insights into the long-term dynamics of oxygen in lakes and its impact on aquatic fauna.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s10452-017-9618-3", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1023148", 
            "issn": [
              "1386-2588", 
              "1573-5125"
            ], 
            "name": "Aquatic Ecology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "51"
          }
        ], 
        "keywords": [
          "lake sediments", 
          "abrupt shift", 
          "deep-water oxygen depletion", 
          "deep-water hypoxia", 
          "sub-alpine lake", 
          "lake benthic communities", 
          "organic matter content", 
          "chironomid record", 
          "lake biogeochemistry", 
          "sediment cores", 
          "subfossil chironomids", 
          "chironomid composition", 
          "long-term dynamics", 
          "anthropogenic eutrophication", 
          "regime shifts", 
          "ecosystem dynamics", 
          "global warming", 
          "oxygen depletion", 
          "such community shifts", 
          "benthic communities", 
          "environmental drivers", 
          "sediments", 
          "eutrophication", 
          "aquatic fauna", 
          "matter content", 
          "lakes", 
          "early warning", 
          "community shifts", 
          "chironomids", 
          "oxygen concentration", 
          "collapse", 
          "biogeochemistry", 
          "gradual increase", 
          "probable cause", 
          "warming", 
          "fauna", 
          "dynamics", 
          "resident community", 
          "records", 
          "core", 
          "shift", 
          "large effect", 
          "composition", 
          "warning", 
          "autocorrelation", 
          "trends", 
          "depletion", 
          "reconstruction", 
          "drivers", 
          "community", 
          "larval growth", 
          "variance", 
          "France", 
          "changes", 
          "minimal threshold", 
          "concentration", 
          "oxygen", 
          "impact", 
          "content", 
          "types", 
          "insights", 
          "increase", 
          "threshold", 
          "response", 
          "cause", 
          "growth", 
          "effect", 
          "approach", 
          "hypoxia"
        ], 
        "name": "Rising variance and abrupt shifts of subfossil chironomids due to eutrophication in a deep sub-alpine lake", 
        "pagination": "307-319", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084024650"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10452-017-9618-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10452-017-9618-3", 
          "https://app.dimensions.ai/details/publication/pub.1084024650"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_724.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s10452-017-9618-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10452-017-9618-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10452-017-9618-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10452-017-9618-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10452-017-9618-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    245 TRIPLES      21 PREDICATES      113 URIs      85 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10452-017-9618-3 schema:about anzsrc-for:06
    2 anzsrc-for:0602
    3 schema:author N00213818798a40e7b3834e5bbfa81636
    4 schema:citation sg:pub.10.1007/0-306-47671-1_3
    5 sg:pub.10.1007/3-540-26590-2_3
    6 sg:pub.10.1007/978-94-007-2745-8_8
    7 sg:pub.10.1007/bf00044408
    8 sg:pub.10.1007/bf00384470
    9 sg:pub.10.1007/bf02336926
    10 sg:pub.10.1007/s10750-013-1632-4
    11 sg:pub.10.1007/s10933-010-9421-9
    12 sg:pub.10.1007/s10933-010-9467-8
    13 sg:pub.10.1007/s10933-013-9722-x
    14 sg:pub.10.1007/s10933-014-9789-z
    15 sg:pub.10.1007/s10933-015-9864-0
    16 sg:pub.10.1007/s12080-013-0186-4
    17 sg:pub.10.1023/a:1008185517959
    18 sg:pub.10.1038/35098000
    19 sg:pub.10.1038/nature08227
    20 sg:pub.10.1038/nature09389
    21 sg:pub.10.1038/nature10723
    22 sg:pub.10.1038/nature11655
    23 sg:pub.10.1038/nature12272
    24 schema:datePublished 2017-03-27
    25 schema:datePublishedReg 2017-03-27
    26 schema:description In response to anthropogenic eutrophication and global warming, deep-water oxygen depletion is expected to have large effects on freshwater lake biogeochemistry and resident communities. In particular, it has been observed that deep-water hypoxia may potentially lead to regime shifts of lake benthic communities. We explored such community shifts by reconstructing a high-resolution subfossil chironomid record from a sediment core collected in the sub-alpine lake Remoray in France. We identified an abrupt shift in chironomid composition triggered by the collapse of the dominant Sergentia coracina-type chironomids around 1980. We found that the collapse of Sergentia coracina type was coupled to a gradual increase in organic matter content in lake sediments caused by eutrophication. We concluded that the most probable cause for the collapse of Sergentia coracina type was a change in oxygen concentrations below the minimal threshold for larval growth. We also analyzed trends in variance and autocorrelation of chironomid dynamics to test whether they can be used as early warnings of the Sergentia collapse. We found that variance rose prior to the collapse, but it was marginally significant (Kendal rank correlation 0.71, p = 0.05), whereas autocorrelation increased but insignificantly and less strongly (Kendal rank correlation 0.23, p = 0.25). By combining reconstructions of ecosystem dynamics and environmental drivers, our approach demonstrates how lake sediments may provide insights into the long-term dynamics of oxygen in lakes and its impact on aquatic fauna.
    27 schema:genre article
    28 schema:isAccessibleForFree false
    29 schema:isPartOf Na070ed0f64d8498d9ce51c91e3400f0f
    30 Ne6c78e6f12f747d9bab5a9e1d385893c
    31 sg:journal.1023148
    32 schema:keywords France
    33 abrupt shift
    34 anthropogenic eutrophication
    35 approach
    36 aquatic fauna
    37 autocorrelation
    38 benthic communities
    39 biogeochemistry
    40 cause
    41 changes
    42 chironomid composition
    43 chironomid record
    44 chironomids
    45 collapse
    46 community
    47 community shifts
    48 composition
    49 concentration
    50 content
    51 core
    52 deep-water hypoxia
    53 deep-water oxygen depletion
    54 depletion
    55 drivers
    56 dynamics
    57 early warning
    58 ecosystem dynamics
    59 effect
    60 environmental drivers
    61 eutrophication
    62 fauna
    63 global warming
    64 gradual increase
    65 growth
    66 hypoxia
    67 impact
    68 increase
    69 insights
    70 lake benthic communities
    71 lake biogeochemistry
    72 lake sediments
    73 lakes
    74 large effect
    75 larval growth
    76 long-term dynamics
    77 matter content
    78 minimal threshold
    79 organic matter content
    80 oxygen
    81 oxygen concentration
    82 oxygen depletion
    83 probable cause
    84 reconstruction
    85 records
    86 regime shifts
    87 resident community
    88 response
    89 sediment cores
    90 sediments
    91 shift
    92 sub-alpine lake
    93 subfossil chironomids
    94 such community shifts
    95 threshold
    96 trends
    97 types
    98 variance
    99 warming
    100 warning
    101 schema:name Rising variance and abrupt shifts of subfossil chironomids due to eutrophication in a deep sub-alpine lake
    102 schema:pagination 307-319
    103 schema:productId N6927f0fa1a724c559373b2d6c650c26c
    104 Ne4e6cd9e727846a0b63c9dfc1631d3e2
    105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084024650
    106 https://doi.org/10.1007/s10452-017-9618-3
    107 schema:sdDatePublished 2022-08-04T17:04
    108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    109 schema:sdPublisher N6cdf42e4c0194547a1cb3cae2e1ec5eb
    110 schema:url https://doi.org/10.1007/s10452-017-9618-3
    111 sgo:license sg:explorer/license/
    112 sgo:sdDataset articles
    113 rdf:type schema:ScholarlyArticle
    114 N00213818798a40e7b3834e5bbfa81636 rdf:first sg:person.011414724171.01
    115 rdf:rest Na7cd6b2b0e4642ba92041738e027fd17
    116 N0ccef8d44370493ab00fe8609de48c03 rdf:first sg:person.010253454673.68
    117 rdf:rest N38b4c3ffd9de44c69ee67981178fffbf
    118 N20527808a0f244c69a6926df2108335d rdf:first sg:person.01053510057.11
    119 rdf:rest rdf:nil
    120 N38b4c3ffd9de44c69ee67981178fffbf rdf:first sg:person.012173022326.10
    121 rdf:rest N20527808a0f244c69a6926df2108335d
    122 N6927f0fa1a724c559373b2d6c650c26c schema:name doi
    123 schema:value 10.1007/s10452-017-9618-3
    124 rdf:type schema:PropertyValue
    125 N6cdf42e4c0194547a1cb3cae2e1ec5eb schema:name Springer Nature - SN SciGraph project
    126 rdf:type schema:Organization
    127 Na070ed0f64d8498d9ce51c91e3400f0f schema:issueNumber 2
    128 rdf:type schema:PublicationIssue
    129 Na7cd6b2b0e4642ba92041738e027fd17 rdf:first sg:person.01275542305.73
    130 rdf:rest N0ccef8d44370493ab00fe8609de48c03
    131 Ne4e6cd9e727846a0b63c9dfc1631d3e2 schema:name dimensions_id
    132 schema:value pub.1084024650
    133 rdf:type schema:PropertyValue
    134 Ne6c78e6f12f747d9bab5a9e1d385893c schema:volumeNumber 51
    135 rdf:type schema:PublicationVolume
    136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Biological Sciences
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Ecology
    141 rdf:type schema:DefinedTerm
    142 sg:journal.1023148 schema:issn 1386-2588
    143 1573-5125
    144 schema:name Aquatic Ecology
    145 schema:publisher Springer Nature
    146 rdf:type schema:Periodical
    147 sg:person.010253454673.68 schema:affiliation grid-institutes:grid.483628.3
    148 schema:familyName Lami
    149 schema:givenName Andrea
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253454673.68
    151 rdf:type schema:Person
    152 sg:person.01053510057.11 schema:affiliation grid-institutes:grid.462058.d
    153 schema:familyName Dakos
    154 schema:givenName Vasilis
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053510057.11
    156 rdf:type schema:Person
    157 sg:person.011414724171.01 schema:affiliation grid-institutes:grid.16697.3f
    158 schema:familyName Belle
    159 schema:givenName Simon
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011414724171.01
    161 rdf:type schema:Person
    162 sg:person.012173022326.10 schema:affiliation grid-institutes:grid.483628.3
    163 schema:familyName Musazzi
    164 schema:givenName Simona
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012173022326.10
    166 rdf:type schema:Person
    167 sg:person.01275542305.73 schema:affiliation grid-institutes:None
    168 schema:familyName Baudrot
    169 schema:givenName Virgile
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275542305.73
    171 rdf:type schema:Person
    172 sg:pub.10.1007/0-306-47671-1_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042687136
    173 https://doi.org/10.1007/0-306-47671-1_3
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/3-540-26590-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019635620
    176 https://doi.org/10.1007/3-540-26590-2_3
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/978-94-007-2745-8_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022854337
    179 https://doi.org/10.1007/978-94-007-2745-8_8
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/bf00044408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044861119
    182 https://doi.org/10.1007/bf00044408
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/bf00384470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001837666
    185 https://doi.org/10.1007/bf00384470
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/bf02336926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017864207
    188 https://doi.org/10.1007/bf02336926
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s10750-013-1632-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053291191
    191 https://doi.org/10.1007/s10750-013-1632-4
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s10933-010-9421-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028991948
    194 https://doi.org/10.1007/s10933-010-9421-9
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s10933-010-9467-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050735149
    197 https://doi.org/10.1007/s10933-010-9467-8
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s10933-013-9722-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044474820
    200 https://doi.org/10.1007/s10933-013-9722-x
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s10933-014-9789-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1036530330
    203 https://doi.org/10.1007/s10933-014-9789-z
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s10933-015-9864-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011138021
    206 https://doi.org/10.1007/s10933-015-9864-0
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s12080-013-0186-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040245770
    209 https://doi.org/10.1007/s12080-013-0186-4
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1023/a:1008185517959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018639775
    212 https://doi.org/10.1023/a:1008185517959
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/35098000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039450839
    215 https://doi.org/10.1038/35098000
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nature08227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019367407
    218 https://doi.org/10.1038/nature08227
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nature09389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034831932
    221 https://doi.org/10.1038/nature09389
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nature10723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022084192
    224 https://doi.org/10.1038/nature10723
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nature11655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026743684
    227 https://doi.org/10.1038/nature11655
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nature12272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026883290
    230 https://doi.org/10.1038/nature12272
    231 rdf:type schema:CreativeWork
    232 grid-institutes:None schema:alternateName UMR CNRS 6249, Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, Besançon, France
    233 schema:name UMR CNRS 6249, Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, Besançon, France
    234 rdf:type schema:Organization
    235 grid-institutes:grid.16697.3f schema:alternateName Center for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartumaa, Estonia
    236 schema:name Center for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartumaa, Estonia
    237 UMR CNRS 6249, Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, Besançon, France
    238 rdf:type schema:Organization
    239 grid-institutes:grid.462058.d schema:alternateName Institut des Sciences de l’Evolution de Montpellier (ISEM), BioDICée team, CNRS, Université de Montpellier, Montpellier, France
    240 schema:name Institut des Sciences de l’Evolution de Montpellier (ISEM), BioDICée team, CNRS, Université de Montpellier, Montpellier, France
    241 Institute of Integrative Biology, Center for Adaptation to a Changing Environment, ETH Zürich, Zurich, Switzerland
    242 rdf:type schema:Organization
    243 grid-institutes:grid.483628.3 schema:alternateName CNR, Istituto per lo Studio degli Ecosistemi, Verbania, Pallanza, Italy
    244 schema:name CNR, Istituto per lo Studio degli Ecosistemi, Verbania, Pallanza, Italy
    245 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...