Adsorption of toxic SOx molecules on heterostructured TiO2/ZnO nanocomposites for gas sensing applications: a DFT study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11-27

AUTHORS

Amirali Abbasi, Jaber Jahanbin Sardroodi

ABSTRACT

Using density functional theory (DFT) calculations, we predict the SOx sensing performance of heterostructured TiO2/ZnO nanocomposites with and without nitrogen doping. The interaction of SO2 and SO3 molecules with the considered nanocomposites were examined based on different orientations of the gas molecules towards the nanocomposite. The fivefold coordinated titanium atoms were found to be the binding sites on the TiO2 side of nanocomposite, whereas, on the ZnO side, the oxygen atom acts as a binding site. Our theoretical results demonstrate that the interaction of SOx molecules with N-doped nanocomposites is more energetically favorable than that with undoped ones, indicating that N-doped TiO2/ZnO nanocomposites show stronger chemisorption and greater electron transfer effects than undoped TiO2/ZnO. The electronic properties of the adsorption systems were investigated in terms of the projected density of states and molecular orbitals. After the adsorption process, all S–O bonds of the SOx molecules were elongated, which is probably attributed the electron density transfer from the S–O bonds to the newly formed bonds between the nanocomposite and SOx molecules. The charge transfer analysis revealed that N-doped nanocomposite acts as a donor. The N-doped nanocomposite induce dramatic changes of electronic properties of TiO2/ZnO, which can be useful feature for improving the gas sensing performance. Our calculation results aim to provide some information for future experiment. More... »

PAGES

29-41

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s10450-017-9926-x

DOI

http://dx.doi.org/10.1007/s10450-017-9926-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1093027392


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411468.e", 
          "name": [
            "Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abbasi", 
        "givenName": "Amirali", 
        "id": "sg:person.014133055621.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133055621.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411468.e", 
          "name": [
            "Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sardroodi", 
        "givenName": "Jaber Jahanbin", 
        "id": "sg:person.014264100262.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264100262.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/238037a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011069243", 
          "https://doi.org/10.1038/238037a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00214-006-0191-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021449158", 
          "https://doi.org/10.1007/s00214-006-0191-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-013-7964-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011239955", 
          "https://doi.org/10.1007/s00339-013-7964-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2228-5326-3-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029265080", 
          "https://doi.org/10.1186/2228-5326-3-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/353737a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014356537", 
          "https://doi.org/10.1038/353737a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11-27", 
    "datePublishedReg": "2017-11-27", 
    "description": "Using density functional theory (DFT) calculations, we predict the SOx sensing performance of heterostructured TiO2/ZnO nanocomposites with and without nitrogen doping. The interaction of SO2 and SO3 molecules with the considered nanocomposites were examined based on different orientations of the gas molecules towards the nanocomposite. The fivefold coordinated titanium atoms were found to be the binding sites on the TiO2 side of nanocomposite, whereas, on the ZnO side, the oxygen atom acts as a binding site. Our theoretical results demonstrate that the interaction of SOx molecules with N-doped nanocomposites is more energetically favorable than that with undoped ones, indicating that N-doped TiO2/ZnO nanocomposites show stronger chemisorption and greater electron transfer effects than undoped TiO2/ZnO. The electronic properties of the adsorption systems were investigated in terms of the projected density of states and molecular orbitals. After the adsorption process, all S\u2013O bonds of the SOx molecules were elongated, which is probably attributed the electron density transfer from the S\u2013O bonds to the newly formed bonds between the nanocomposite and SOx molecules. The charge transfer analysis revealed that N-doped nanocomposite acts as a donor. The N-doped nanocomposite induce dramatic changes of electronic properties of TiO2/ZnO, which can be useful feature for improving the gas sensing performance. Our calculation results aim to provide some information for future experiment.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s10450-017-9926-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134428", 
        "issn": [
          "0929-5607", 
          "1572-8757"
        ], 
        "name": "Adsorption", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "TiO2/ZnO nanocomposites", 
      "SOx molecules", 
      "ZnO nanocomposites", 
      "fivefold coordinated titanium atoms", 
      "electronic properties", 
      "coordinated titanium atoms", 
      "density functional theory calculations", 
      "interaction of SO2", 
      "charge transfer analysis", 
      "electron density transfer", 
      "functional theory calculations", 
      "electron transfer effect", 
      "TiO2/ZnO", 
      "gas sensing applications", 
      "nanocomposite act", 
      "SO3 molecules", 
      "strong chemisorption", 
      "nitrogen doping", 
      "adsorption process", 
      "undoped TiO2", 
      "molecular orbitals", 
      "DFT study", 
      "density transfer", 
      "oxygen atoms", 
      "TiO2 side", 
      "gas molecules", 
      "theory calculations", 
      "titanium atoms", 
      "adsorption system", 
      "undoped ones", 
      "nanocomposites", 
      "bonds", 
      "ZnO side", 
      "molecules", 
      "density of states", 
      "sensing applications", 
      "atoms", 
      "chemisorption", 
      "adsorption", 
      "transfer effects", 
      "TiO2", 
      "properties", 
      "ZnO", 
      "doping", 
      "orbitals", 
      "ZnO.", 
      "calculation results", 
      "different orientations", 
      "SO2", 
      "interaction", 
      "SOx", 
      "calculations", 
      "gas", 
      "dramatic changes", 
      "transfer", 
      "donors", 
      "sites", 
      "theoretical results", 
      "density", 
      "applications", 
      "performance", 
      "orientation", 
      "process", 
      "state", 
      "results", 
      "experiments", 
      "future experiments", 
      "effect", 
      "analysis", 
      "system", 
      "transfer analysis", 
      "useful features", 
      "one", 
      "study", 
      "terms", 
      "changes", 
      "side", 
      "features", 
      "act", 
      "information", 
      "greater electron transfer effects", 
      "toxic SOx molecules"
    ], 
    "name": "Adsorption of toxic SOx molecules on heterostructured TiO2/ZnO nanocomposites for gas sensing applications: a DFT study", 
    "pagination": "29-41", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1093027392"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s10450-017-9926-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s10450-017-9926-x", 
      "https://app.dimensions.ai/details/publication/pub.1093027392"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_726.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s10450-017-9926-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10450-017-9926-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10450-017-9926-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10450-017-9926-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10450-017-9926-x'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      22 PREDICATES      113 URIs      99 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s10450-017-9926-x schema:about anzsrc-for:09
2 anzsrc-for:0904
3 anzsrc-for:0912
4 schema:author N7ee9853c70ba41708ca837c97caaae32
5 schema:citation sg:pub.10.1007/s00214-006-0191-4
6 sg:pub.10.1007/s00339-013-7964-0
7 sg:pub.10.1038/238037a0
8 sg:pub.10.1038/353737a0
9 sg:pub.10.1186/2228-5326-3-5
10 schema:datePublished 2017-11-27
11 schema:datePublishedReg 2017-11-27
12 schema:description Using density functional theory (DFT) calculations, we predict the SOx sensing performance of heterostructured TiO2/ZnO nanocomposites with and without nitrogen doping. The interaction of SO2 and SO3 molecules with the considered nanocomposites were examined based on different orientations of the gas molecules towards the nanocomposite. The fivefold coordinated titanium atoms were found to be the binding sites on the TiO2 side of nanocomposite, whereas, on the ZnO side, the oxygen atom acts as a binding site. Our theoretical results demonstrate that the interaction of SOx molecules with N-doped nanocomposites is more energetically favorable than that with undoped ones, indicating that N-doped TiO2/ZnO nanocomposites show stronger chemisorption and greater electron transfer effects than undoped TiO2/ZnO. The electronic properties of the adsorption systems were investigated in terms of the projected density of states and molecular orbitals. After the adsorption process, all S–O bonds of the SOx molecules were elongated, which is probably attributed the electron density transfer from the S–O bonds to the newly formed bonds between the nanocomposite and SOx molecules. The charge transfer analysis revealed that N-doped nanocomposite acts as a donor. The N-doped nanocomposite induce dramatic changes of electronic properties of TiO2/ZnO, which can be useful feature for improving the gas sensing performance. Our calculation results aim to provide some information for future experiment.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N4d78c8b049bc4b33a655c58280ba4274
17 N62affa2188a8416eb9500cdb5ac92444
18 sg:journal.1134428
19 schema:keywords DFT study
20 SO2
21 SO3 molecules
22 SOx
23 SOx molecules
24 TiO2
25 TiO2 side
26 TiO2/ZnO
27 TiO2/ZnO nanocomposites
28 ZnO
29 ZnO nanocomposites
30 ZnO side
31 ZnO.
32 act
33 adsorption
34 adsorption process
35 adsorption system
36 analysis
37 applications
38 atoms
39 bonds
40 calculation results
41 calculations
42 changes
43 charge transfer analysis
44 chemisorption
45 coordinated titanium atoms
46 density
47 density functional theory calculations
48 density of states
49 density transfer
50 different orientations
51 donors
52 doping
53 dramatic changes
54 effect
55 electron density transfer
56 electron transfer effect
57 electronic properties
58 experiments
59 features
60 fivefold coordinated titanium atoms
61 functional theory calculations
62 future experiments
63 gas
64 gas molecules
65 gas sensing applications
66 greater electron transfer effects
67 information
68 interaction
69 interaction of SO2
70 molecular orbitals
71 molecules
72 nanocomposite act
73 nanocomposites
74 nitrogen doping
75 one
76 orbitals
77 orientation
78 oxygen atoms
79 performance
80 process
81 properties
82 results
83 sensing applications
84 side
85 sites
86 state
87 strong chemisorption
88 study
89 system
90 terms
91 theoretical results
92 theory calculations
93 titanium atoms
94 toxic SOx molecules
95 transfer
96 transfer analysis
97 transfer effects
98 undoped TiO2
99 undoped ones
100 useful features
101 schema:name Adsorption of toxic SOx molecules on heterostructured TiO2/ZnO nanocomposites for gas sensing applications: a DFT study
102 schema:pagination 29-41
103 schema:productId N03727ee27d574e578d432d539edfa597
104 N6767cdf3efee4e348855f0f37a275131
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093027392
106 https://doi.org/10.1007/s10450-017-9926-x
107 schema:sdDatePublished 2022-01-01T18:44
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher N6680cef145204df6855ea013be4b60e2
110 schema:url https://doi.org/10.1007/s10450-017-9926-x
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N03727ee27d574e578d432d539edfa597 schema:name dimensions_id
115 schema:value pub.1093027392
116 rdf:type schema:PropertyValue
117 N4d78c8b049bc4b33a655c58280ba4274 schema:issueNumber 1
118 rdf:type schema:PublicationIssue
119 N62affa2188a8416eb9500cdb5ac92444 schema:volumeNumber 24
120 rdf:type schema:PublicationVolume
121 N6680cef145204df6855ea013be4b60e2 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 N6767cdf3efee4e348855f0f37a275131 schema:name doi
124 schema:value 10.1007/s10450-017-9926-x
125 rdf:type schema:PropertyValue
126 N7ee9853c70ba41708ca837c97caaae32 rdf:first sg:person.014133055621.61
127 rdf:rest Nf8c62bd93395473a916196d72e494f84
128 Nf8c62bd93395473a916196d72e494f84 rdf:first sg:person.014264100262.28
129 rdf:rest rdf:nil
130 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
131 schema:name Engineering
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
134 schema:name Chemical Engineering
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
137 schema:name Materials Engineering
138 rdf:type schema:DefinedTerm
139 sg:journal.1134428 schema:issn 0929-5607
140 1572-8757
141 schema:name Adsorption
142 schema:publisher Springer Nature
143 rdf:type schema:Periodical
144 sg:person.014133055621.61 schema:affiliation grid-institutes:grid.411468.e
145 schema:familyName Abbasi
146 schema:givenName Amirali
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133055621.61
148 rdf:type schema:Person
149 sg:person.014264100262.28 schema:affiliation grid-institutes:grid.411468.e
150 schema:familyName Sardroodi
151 schema:givenName Jaber Jahanbin
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264100262.28
153 rdf:type schema:Person
154 sg:pub.10.1007/s00214-006-0191-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021449158
155 https://doi.org/10.1007/s00214-006-0191-4
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s00339-013-7964-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011239955
158 https://doi.org/10.1007/s00339-013-7964-0
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/238037a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011069243
161 https://doi.org/10.1038/238037a0
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/353737a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014356537
164 https://doi.org/10.1038/353737a0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/2228-5326-3-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029265080
167 https://doi.org/10.1186/2228-5326-3-5
168 rdf:type schema:CreativeWork
169 grid-institutes:grid.411468.e schema:alternateName Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
170 schema:name Computational Nanomaterials Research Group (CNRG), Azarbaijan Shahid Madani University, Tabriz, Iran
171 Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
172 Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...