On a correction of a property of GCn sets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Hakop Hakopian, Vahagn Vardanyan

ABSTRACT

An n-poised node set X in the plane is called GCn set if the (bivariate) fundamental polynomial of each node is a product of n linear factors. A line is called k-node line if it passes through exactly k-nodes of X. An (n + 1)-node line is called a maximal line. In 1982, Gasca and Maeztu conjectured that every GCn set has a maximal line. Until now the conjecture has been proved only for n ≤ 5. We say that a node uses a line if the line is a factor of the fundamental polynomial of this node. It is a simple fact that any maximal line λ is used by all n+12 nodes in X∖λ. We consider the main result of the paper—Bayramyan and Hakopian (Adv. Comput. Math. 43, 607–626, 2017) stating that any n-node line of GCn set is used either by exactly n2 nodes or by exactly n−12 nodes, provided that the Gasca-Maeztu conjecture is true. Here, we show that this result is not correct in the case n = 3. Namely, we bring an example of a GC3 set and a 3-node line there which is not used at all. Fortunately, then we were able to establish that this is the only possible counterexample, i.e., the abovementioned result is true for all n ≥ 4. We also characterize the exclusive case n = 3 and present some new results on the maximal lines and the usage of n-node lines in GCn sets. More... »

PAGES

311-325

References to SciGraph publications

  • 2014-08. The Gasca–Maeztu conjecture for n=5 in NUMERISCHE MATHEMATIK
  • 2017-06. On a new property of n-poised and GCn sets in ADVANCES IN COMPUTATIONAL MATHEMATICS
  • 2007-08. Multivariate polynomial interpolation: conjectures concerning GC-sets in NUMERICAL ALGORITHMS
  • 1982-02. On Lagrange and Hermite interpolation in Rk in NUMERISCHE MATHEMATIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s10444-018-9618-4

    DOI

    http://dx.doi.org/10.1007/s10444-018-9618-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104554305


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Yerevan State University", 
              "id": "https://www.grid.ac/institutes/grid.21072.36", 
              "name": [
                "Yerevan State University, Yerevan, Armenia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hakopian", 
            "givenName": "Hakop", 
            "id": "sg:person.010125736347.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010125736347.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Academy of Sciences of Armenia", 
              "id": "https://www.grid.ac/institutes/grid.418094.0", 
              "name": [
                "Institute of Mathematics of NAS of Armenia, Yerevan, Armenia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vardanyan", 
            "givenName": "Vahagn", 
            "id": "sg:person.015526536643.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015526536643.63"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.jat.2006.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003612369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jat.2009.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006938453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00211-013-0599-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007291167", 
              "https://doi.org/10.1007/s00211-013-0599-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01399308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008112030", 
              "https://doi.org/10.1007/bf01399308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01399308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008112030", 
              "https://doi.org/10.1007/bf01399308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0273-0979-96-00666-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036940485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11075-006-9062-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049595018", 
              "https://doi.org/10.1007/s11075-006-9062-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10444-016-9499-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053632438", 
              "https://doi.org/10.1007/s10444-016-9499-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10444-016-9499-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053632438", 
              "https://doi.org/10.1007/s10444-016-9499-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0714050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062852442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.9734/bjmcs/2015/18816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074132546"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "An n-poised node set X in the plane is called GCn set if the (bivariate) fundamental polynomial of each node is a product of n linear factors. A line is called k-node line if it passes through exactly k-nodes of X. An (n + 1)-node line is called a maximal line. In 1982, Gasca and Maeztu conjectured that every GCn set has a maximal line. Until now the conjecture has been proved only for n \u2264 5. We say that a node uses a line if the line is a factor of the fundamental polynomial of this node. It is a simple fact that any maximal line \u03bb is used by all n+12 nodes in X\u2216\u03bb. We consider the main result of the paper\u2014Bayramyan and Hakopian (Adv. Comput. Math. 43, 607\u2013626, 2017) stating that any n-node line of GCn set is used either by exactly n2 nodes or by exactly n\u221212 nodes, provided that the Gasca-Maeztu conjecture is true. Here, we show that this result is not correct in the case n = 3. Namely, we bring an example of a GC3 set and a 3-node line there which is not used at all. Fortunately, then we were able to establish that this is the only possible counterexample, i.e., the abovementioned result is true for all n \u2265 4. We also characterize the exclusive case n = 3 and present some new results on the maximal lines and the usage of n-node lines in GCn sets.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s10444-018-9618-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1045108", 
            "issn": [
              "1019-7168", 
              "1572-9044"
            ], 
            "name": "Advances in Computational Mathematics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "45"
          }
        ], 
        "name": "On a correction of a property of GCn sets", 
        "pagination": "311-325", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5b43a8dfbd13f03f71f136bbdd13858d846f47110b68f1b6e1becb825a5bcc2d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s10444-018-9618-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104554305"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s10444-018-9618-4", 
          "https://app.dimensions.ai/details/publication/pub.1104554305"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47956_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs10444-018-9618-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s10444-018-9618-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s10444-018-9618-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s10444-018-9618-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s10444-018-9618-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    102 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s10444-018-9618-4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N4fc1b296ec7147228c8b2808a8699def
    4 schema:citation sg:pub.10.1007/bf01399308
    5 sg:pub.10.1007/s00211-013-0599-4
    6 sg:pub.10.1007/s10444-016-9499-3
    7 sg:pub.10.1007/s11075-006-9062-2
    8 https://doi.org/10.1016/j.jat.2006.02.003
    9 https://doi.org/10.1016/j.jat.2009.04.006
    10 https://doi.org/10.1090/s0273-0979-96-00666-0
    11 https://doi.org/10.1137/0714050
    12 https://doi.org/10.9734/bjmcs/2015/18816
    13 schema:datePublished 2019-02
    14 schema:datePublishedReg 2019-02-01
    15 schema:description An n-poised node set X in the plane is called GCn set if the (bivariate) fundamental polynomial of each node is a product of n linear factors. A line is called k-node line if it passes through exactly k-nodes of X. An (n + 1)-node line is called a maximal line. In 1982, Gasca and Maeztu conjectured that every GCn set has a maximal line. Until now the conjecture has been proved only for n ≤ 5. We say that a node uses a line if the line is a factor of the fundamental polynomial of this node. It is a simple fact that any maximal line λ is used by all n+12 nodes in X∖λ. We consider the main result of the paper—Bayramyan and Hakopian (Adv. Comput. Math. 43, 607–626, 2017) stating that any n-node line of GCn set is used either by exactly n2 nodes or by exactly n−12 nodes, provided that the Gasca-Maeztu conjecture is true. Here, we show that this result is not correct in the case n = 3. Namely, we bring an example of a GC3 set and a 3-node line there which is not used at all. Fortunately, then we were able to establish that this is the only possible counterexample, i.e., the abovementioned result is true for all n ≥ 4. We also characterize the exclusive case n = 3 and present some new results on the maximal lines and the usage of n-node lines in GCn sets.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N287764263ba44a70853d32f7992f8b30
    20 N29b37a0996694670a1e9b5740b1cf691
    21 sg:journal.1045108
    22 schema:name On a correction of a property of GCn sets
    23 schema:pagination 311-325
    24 schema:productId N03aa4b5dfe1f456288773e631d1641c3
    25 N27b0d7dbb2934abe99750de84f7ecd91
    26 N7ec6781e5f074be2919de248bb150dae
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104554305
    28 https://doi.org/10.1007/s10444-018-9618-4
    29 schema:sdDatePublished 2019-04-11T09:07
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Nf392352e22d84fd388993d441d019fb2
    32 schema:url https://link.springer.com/10.1007%2Fs10444-018-9618-4
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N03aa4b5dfe1f456288773e631d1641c3 schema:name doi
    37 schema:value 10.1007/s10444-018-9618-4
    38 rdf:type schema:PropertyValue
    39 N27b0d7dbb2934abe99750de84f7ecd91 schema:name dimensions_id
    40 schema:value pub.1104554305
    41 rdf:type schema:PropertyValue
    42 N287764263ba44a70853d32f7992f8b30 schema:issueNumber 1
    43 rdf:type schema:PublicationIssue
    44 N29b37a0996694670a1e9b5740b1cf691 schema:volumeNumber 45
    45 rdf:type schema:PublicationVolume
    46 N4fc1b296ec7147228c8b2808a8699def rdf:first sg:person.010125736347.70
    47 rdf:rest N928273e3d5784a0d8490e232b7244f23
    48 N7ec6781e5f074be2919de248bb150dae schema:name readcube_id
    49 schema:value 5b43a8dfbd13f03f71f136bbdd13858d846f47110b68f1b6e1becb825a5bcc2d
    50 rdf:type schema:PropertyValue
    51 N928273e3d5784a0d8490e232b7244f23 rdf:first sg:person.015526536643.63
    52 rdf:rest rdf:nil
    53 Nf392352e22d84fd388993d441d019fb2 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Mathematical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Pure Mathematics
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1045108 schema:issn 1019-7168
    62 1572-9044
    63 schema:name Advances in Computational Mathematics
    64 rdf:type schema:Periodical
    65 sg:person.010125736347.70 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
    66 schema:familyName Hakopian
    67 schema:givenName Hakop
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010125736347.70
    69 rdf:type schema:Person
    70 sg:person.015526536643.63 schema:affiliation https://www.grid.ac/institutes/grid.418094.0
    71 schema:familyName Vardanyan
    72 schema:givenName Vahagn
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015526536643.63
    74 rdf:type schema:Person
    75 sg:pub.10.1007/bf01399308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008112030
    76 https://doi.org/10.1007/bf01399308
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/s00211-013-0599-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007291167
    79 https://doi.org/10.1007/s00211-013-0599-4
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/s10444-016-9499-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053632438
    82 https://doi.org/10.1007/s10444-016-9499-3
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/s11075-006-9062-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049595018
    85 https://doi.org/10.1007/s11075-006-9062-2
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/j.jat.2006.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003612369
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/j.jat.2009.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006938453
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1090/s0273-0979-96-00666-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036940485
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1137/0714050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852442
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.9734/bjmcs/2015/18816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074132546
    96 rdf:type schema:CreativeWork
    97 https://www.grid.ac/institutes/grid.21072.36 schema:alternateName Yerevan State University
    98 schema:name Yerevan State University, Yerevan, Armenia
    99 rdf:type schema:Organization
    100 https://www.grid.ac/institutes/grid.418094.0 schema:alternateName National Academy of Sciences of Armenia
    101 schema:name Institute of Mathematics of NAS of Armenia, Yerevan, Armenia
    102 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...